How Do I Select The Right Laser Eye Protection?

LASER stands for Light Amplification by Stimulated Emission of Radiation. Lasers emit a narrow beam of light and that beam of light is emitted in short bursts and focuses precisely on the desired target. The energy emitted by the laser can be absorbed, scattered, transmitted or reflected. When used in medical procedures, lasers transmit most of their energy to the intended target and that is why proper laser eye protection is so important.

The Eye is Vulnerable to Laser Radiation

The human eye is extremely vulnerable to laser radiation. When working with medium to high-powered laser systems, it is vital to wear the correct laser eye protection for the specified laser type. Unprotected exposure to lasers can result in the development of cataracts or even a corneal burn, which can ultimately result in vision loss. By selecting and wearing the appropriate pair of laser safety glasses, medical personnel can keep their eyes protected from applications and procedures that require a laser system. Protective laser safety glasses must be matched in terms of wavelength frequency and the type of laser being used (e.g., YAG laser glasses, Holmium laser glasses) for your specific application. That is why it is important to understand the consequences of laser radiation exposure.

3 Ways Lasers Can Damage Your Eyes

There are three ways that lasers can damage your eyes including thermal, photochemical, and mechanical damage. Laser safety glasses provide valuable laser eye protection by shielding vulnerable eye tissue from the high-intensity radiation emitted. Laser safety glasses are not only a vital safety component, they are also required in all facilities where medical, surgical, cosmetic or dental laser procedures are performed. Laser safety glasses are also used in research and forensic laboratories.

What Types of Eye Protection are Available?

There are several levels of laser eye protection available. Laser safety glasses are measured in optical density and this number reflects the ability of the filter to block the light that is transmitted at a particular wavelength. The higher the optical density, the more light from the wavelength is blocked. For example, laser safety glasses with an optical density of seven will block all but 0.00001% of the laser frequency.

How Do I Select the Right Laser Eye Protection?

Selecting the right laser eye protection may seem overwhelming; we have simplified the selection process for you by creating a white paper that discusses the eight key factors you’ll want to consider when selecting the right laser eye protection. It is extremely important to protect your eyes and yourself from the harmful effects of laser radiation. Remember, the damage done to your eyes from laser radiation exposure can be permanent. If you have any additional questions regarding how to select the right laser eye protection please comment below or email us at info@universalmedicalinc.com.

 

 

//universalmedicalinc.wistia.com/medias/7w4vgr7ohi?embedType=seo&videoWidth=360

 

 

Discover Gucci Radiation Resistant Glasses

Are you fashion savvy?

Have you been searching for a fashionable way to protect your eyes from the harmful effects of ionizing radiation?

Then look no further.

Gucci radiation resistant glasses have arrived. Gucci, a name synonymous with high-fashion and stylish sophistication is the latest addition to our radiation protection eyewear line.

Gucci’s styles for women range from the lightweight nylon frames of the Gucci GG 3547/S, to the bold, full-rimmed frame of the Gucci GG 3574/S.

For men, available styles include the classic Gucci GG1000/S full-rimmed acetate frame and the GG 1856/S ultra-sleek wrap frame.

Radiation resistant glasses never looked so good.

Women’s Radiation Resistant Glasses

Gucci GG 3547/S

The Gucci GG 3547/S (shown above) frames are made of lightweight, durable blended nylon for added comfort and flexibility. Unlike the brittle nylon eyeglass frames of the late 1940s, blended nylon frames are more resistant to breakage and are inherently stronger than their predecessor. Consequently, blended nylon frames are ideal for those looking for a high-quality, durable, and resilient frame.

The round shape of these frames subtly draws attention to the eyes and are well-suited for those with diamond-shaped faces. The ‘simultaneous contrast’ of the red and green temples, juxtaposing complementary colors, creates a stunning visual effect. The decorative, high-set temples are emblazoned with the iconic Gucci label (white lettering) on a bold red background. For those who have been seeking a distinctive and sophisticated pair of radiation resistant glasses, your journey finally may be nearing its end.

 

Gucci GG 3574/S

The epitome of Italian luxury, the Gucci GG 3574/S rectangular frame is bold and distinctive. The hypoallergenic black optyl frame is specially coated to resist sweat and cosmetics. These Gucci radiation resistant glasses seamlessly blend fashion, elegance, and sophistication into an integral piece of personal radiation protective equipment. A trendy frame for those who are unwilling to sacrifice style but understand the importance of properly protecting their eyes from the harmful effects of ionizing radiation.

Have you been searching for radiation eye protection that is functional, yet fashionable?

Your search is over.

These Gucci radiation resistant frames are the answer.

Offering the industry standard 0.75mm lead equivalency, the SCHOTT radiation resistant safety glass lenses will protect your eyes from the harmful effects of ionizing radiation.

According to the IAEA (International Atomic Energy Agency), “Many years or decades could pass before radiation-induced eye lens injuries become apparent. At relatively high exposures of a few Gy* , lens opacities may occur after many years¹.”

Ensure that your eyes are properly protected by wearing the appropriate radiation resistant glasses. In a 2010 study, Comparing Strategies For Operator Eye Protection In The Interventional Radiography Suite, “The use of leaded glasses alone reduced the lens dose rate by a factor of 5 to 10.” Reduce your risk of developing cataracts, while staying fashionable and safe with Gucci radiation resistant glasses.

Sources:

Thornton RH, Dauer LT, Altamirano JP, Alvardo KJ, St Germain J, Solomon SB. (2010) Comparing Strategies For Operator Eye Protection In The Interventional Radiography Suite.

//www.ncbi.nlm.nih.gov/pubmed/20920841

IAEA | Radiation Protection of Patients (RPOP) Radiation and cataract: Staff protection

//rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/6_OtherClinicalSpecialities/radiation-cataract/Radiation-and_cataract.htm

Gray (Unit)

Wiki: //en.wikipedia.org/wiki/Gray_(unit)

*Gy = Gray, is a derived unit of ionizing radiation dose in the International System of Units (SI). It is a measure of the absorbed dose and is defined and is defined as the absorption of one joule of radiation energy by one kilogram of matter (0.01 Gy is equivalent to 1 rad).

3 Different Types Of Prescription Lead Glasses

For those who wear corrective lenses and need to protect their eyes from radiation, we offer three different prescription lens types for our lead glasses. After reading this post you will understand the different types of prescription lens types that we offer, eyeglass prescription terminology, and what prescription information is needed to properly place your order.

Before placing your order, it is important for you to understand the differences between the various corrective lenses before making your decision. Lead glasses provide you with the necessary eye protection to help reduce your risk of developing cataracts from prolonged exposure to ionizing radiation. In the past, those who wore corrective lenses would often be required to wear bulky radiation safety goggles or fit over lead glasses. However, a number of the lead glasses that we now offer are available with various types of prescription lens.

Prescription lens types:

  • Single vision prescription lenses
  • Lined bifocal prescription lenses
  • Progressive bifocal lenses

Single Vision

Single vision prescription lenses have the same magnification throughout and correct for only one distance. These lenses are designed to correct conditions such as myopia (nearsightedness¹), hyperopia (farsightedness), and astigmatism². Our single vision prescription radiation safety lenses offer the industry standard 0.75mm lead equivalency and are manufactured using SCHOTT SF-6 HT radiation resistant glass.

How do I know if I have a single vision prescription?

To illustrate, an example of a single vision prescription is shown below. While reviewing the sample prescription, you may notice several abbreviations, listed below are common terms found on eyeglass prescriptions. If your prescription doesn’t have any values or abbreviations in the ADD column, you have a single vision prescription.

 Single Vision Prescription Lenses
RxSPHERICALCYLINDRICALAXIS
O.D.-2.00-0.5040
O.S.-1.75
Pupillary Distance65

Prescription Abbreviations & Terminology 

  • OD – Oculus Dexter, from the Latin word dexter meaning “right”, means the right eye.
  • OS – Oculus Sinister, sinister which is derived from the Latin word sinistra meaning “left hand”, means the left eye.
  • SPH – Spherical, is the main strength of the lens prescription, and is written in 0.25 increments. It is also referred to as power and is abbreviated as PWR.
  • CYL – Cylinder, this will only appear on your prescription if you have an astigmatism, and is written in 0.25 increments. It is possible that this will only apply to one eye. If you don’t have an astigmatism, your doctor may leave this field blank, or they may choose to put ‘00’, ‘DS’, SPH’, or ‘Plano’ in this field. If the field has one of those abbreviations you will know that you don’t have an astigmatism correction in one or both eyes.
  • AX – Axis can be abbreviated as AX, or simply X. If the cylinder field is left blank or has any of the following abbreviations including ‘00’, ‘DS’, SPH’, or ‘Plano’, this field will be left blank or have an ‘0’.
  • PD – Pupillary distance or interpupillary distance (IPD) is the distance (industry standard is in millimeters) between your right pupil and left pupil. The PD is usually written in the lower row labeled P.D. on your prescription.

Single-Vision Pupillary Distance

  • Binocular P.D. – 65
  • Monocular P.D. – 30/30.5  (OS/OD)

Bifocal/Progressive Pupillary Distance Binocular

  • Near/Reading P.D. – 62
  • Distance P.D. – 65

The American Optometric Association states that Astigmatism is a vision condition that causes blurred vision due either to the irregular shape of the cornea, the clear front cover of the eye, or in other cases the curvature of the lens inside the eye. Astigmatism is a particularly common vision condition.

Lined Bifocal

Bifocal prescriptions are for patients who have difficulty seeing both far and near. They are commonly prescribed to individuals with presbyopia who also require a correction for myopia, hyperopia, and/or astigmatism. As their name suggests, lined bifocals offer distance correction on the upper portion of the lens, and near vision correction on the bottom portion of the lens. Lined bifocal lenses, provide two distinct optical powers with different focal lengths – one for distant vision and one for near vision. The near vision lens has a semicircle (bottom) that measures 28mm wide and has a flat-top (top). Traditional lined bifocal lenses are separated by a visible line.

Progressive Bifocal

Progressive bifocals, or simply progressive lenses, allow you to experience bifocal vision without the traditional bifocal lines. Progressive lenses provide you with a more natural way of seeing. Presbyopia³ is a common vision condition for those over the age of 40 where the eye has difficulty focusing on near-field objects. Individuals who have worn traditional bifocals in the past may have experienced “image jump”, this occurs when there is an abrupt break from distance to near-field vision. Progressive bifocal lenses provide  you with optimum vision and a seamless progression of lens strength.

How do I know if I have a bifocal prescription?

If you notice that there are numbers in the ADD column of your prescription, you have a bifocal prescription.

 Lined Bifocal/Progressive Bifocal Prescription Lenses
RxSPHERICALCYLINDRICALAXISADD
O.D.-2.00-0.5040+1.75
O.S.-1.75+2.00 PAL
Pupillary Distance65

ADD – ADD is the value commonly used for bifocal or progressive lenses. ADD indicates how much power is added to the distance prescription to create the reading-only prescription. ADD corrections will usually have the same value for both eyes. The abbreviation PAL may appear next to one of the numbers in the ADD field, or it may be written elsewhere on your prescription, this indicates that your doctor determined that you will need a different ADD correction for progressive lenses.

PAL– Progressive additive lens (ADD value specifically for progressive bifocal lenses).

Ordering Information

We hope that this post has provided you with helpful information that you will assist you during your research. To review, we covered the different types of prescription lead glasses that we offer, common terminology and abbreviations found on your prescription, and what prescription information we need to properly place your prescription lead glasses order. When ordering, please fax or email your prescription (Rx) including your pupillary distance (PD). For your convenience, prescription information can also be noted in the “Order Comments/Special Instructions” section under “Payment Information” while checking out.

Please note: Lens enhancements options are not available in combination with prescription lenses. 

Questions? Comments?

If you have any questions regarding the different types of prescription lead glasses that we offer, please feel free to contact us via live chat or simply leave a comment below.

Sources:

American Optometric Association – Eye & Vision Problems

 

Whiteboard Wednesday: Surgeon Cooling Systems

How Do Surgeons Stay Cool In The Operating Room?

Today on Whiteboard Wednesday we talk about how surgeons stay cool in the operating room. A major concern for medical staff working in the OR is fatigue caused by overheating.  Overheating is caused by the multiple layers surgeons and staff must wear for protection. During certain procedures the surgeon’s body heat is intensified, the CoolVest can help keep the surgeon more comfortable and alert.

What Is A Surgeon Cooling System?

The CoolVest System is a unique and innovative personal cooling system that is designed to keep surgeons cool and focused while performing surgery. The Single-Surgeon CoolVest System allows you to regulate your personal comfort so that you won’t perspire, suffer fatigue or lose concentration. The surgeon cooling system includes a lightweight vest that is constructed of hospital-grade ventilated nylon for maximum cooling, a variable flow control with quick-dry disconnect, wheeled cart with handle for convenient portability, and a UL listed cooler with variable flow 110V pump.

How Does The Surgeon Cooling System Work?  

The CoolVest is worn over scrubs and under surgical gowns. The tubing connection is located at the lower back of the garment to help keep the water supply tubing from interfering with the sterile field. Cooling tubes are located in the front and back of the garment for maximum cooling. The patented, thin-walled, non-kink tubing has been specifically designed for use under lead aprons.

Setup

  1. To begin, the cooling unit is filled with a mixture of approximately one gallon of water and ice (preferably block ice) or cube ice to the top of the unit.
  2. After the unit has been properly filled, you will want to attach the 8 foot insulated supply hose (quick disconnect) to the CoolVest.
  3. Apply the protective hose cover and then attach the other end of the insulated supply hose to the cooling unit.
  4. Listen for an audible click from both quick disconnect hose connections to ensure that they are properly connected.

Operation

  1. Once the supply hose has been properly protected and connected, you will want to plug the cooling unit’s electrical adapter into a grounded 110V outlet.
  2. Turn the unit on using the green On/Off power switch.
  3. Allow the unit to cycle until L.E.D indicator on Speed Control is activated (30 second pump start delay).
  4. Press “Ice Cube” on the Speed Control display on the lid of the system to start unit at desired level. L.E.D. on display will light from left to right for increased water flow. (e.g. 20-40-60-80-100% levels)
  5. To increase flow rate, press the “Ice Cube” button again, as needed, to adjust to the desired flow rate.
  6. To reset Speed Control setting: press “Ice Cube” until the surgeon cooling system stops; restart by pressing “Ice Cube” again until correct setting is indicated.

Relief From Heat While Performing Surgery

Surgeons have been impacted by excessive heat surrounding their bodies due to stress and other environmental factors. For example, neurosurgeons are required to wear appropriate radiation protective shielding (lead aprons, thyroid collars, lead glasses) while using imaging technology to protect them from the harmful effects of ionizing radiation. The use of these protective garments in addition to scrubs and surgical gowns can significantly increase the surgeon’s body temperature during surgical procedures. The increase in temperature can result in the surgeon becoming fatigued and perspiring during long surgeries which can reduce their focus and attention, resulting in a decrease in their ability to perform their tasks at the desired level.

Share Your Experiences

Have you experienced an increase in your body temperature while performing complicated surgeries? Interested in learning more? Make sure to check out our post on the Active Cooling Vest System For Surgeons In The OR!

How Do Lead Glasses Protect Your Eyes?

Protecting Your Eyes From Ionizing Radiation Exposure

Lead shielding is an important radiation safety principle. In fact, shielding is one of the three basic radiation safety principles. Time, distance and shielding are the primary means of eliminating or reducing ionizing radiation exposure.

Lead Shielding

Shielding should be used wherever it is necessary to reduce or eliminate radiation exposure. There are a variety of types of lead shielding options, the focus of this article will be on radiation eye protection and the use of lead glasses.

Radiation Attenuation 

Appropriate shielding placed between the source of radiation and the worker, radiation is attenuated and exposure may be completely eliminated or reduced to an acceptable level. Lead acts as a barrier to reduce x-ray’s effect by blocking or bouncing particles through a barrier material. Attenuation is the result of interactions between x-ray and matter that include absorption and scatter. Much like lead aprons which are commonly found in x-ray rooms in hospitals, lead glasses reduce radiation exposure and protect the lens of the eye.

Occupational Radiation Exposure Limits

Exposure limits have been established by the Nuclear Regulatory Committee (NRC) and set to a level where apparent injury due to ionizing radiation during a normal lifetime is unlikely. This limit is called the “maximum permissible exposure” and medical personnel should be aware of their occupational radiation dose. These occupational radiation exposure limits have been established to help minimize the amount of radiation a worker receives annually by monitoring their occupational radiation dose and keeping them under the established limits. “The exposure limit for the whole body (5,000 mrem) is lower than that for a single organ because all organs and tissues are exposed in whole body exposure, while only a single organ is involved in the single organ exposure limits¹.”

Lens of Eye (LDE) Radiation Exposure Limit

The occupational exposure limit for the lens of the eye (LDE) is 15,000 millirem or 0.15 Sieverts. The Lens of Eye Dose Equivalent (LDE) 10 CFR 20.1003 “applies to the external exposure of the lens of the eye and is taken as the dose equivalent at tissue depth of 0.3 centimeter (300 mg/cm²).”

Personal Monitoring 

The U.S. Nuclear Regulatory Commission has requirements regarding personal monitoring devices. Many medical personnel are required to wear an individual monitoring device to measure the dose to the whole body as well as one at an unshielded location closer to the eye to provide an accurate reading of the lens dose equivalent. Wearing lead glasses will help ensure the lenses of the eyes are properly protected from ionizing radiation thereby reducing your risk of developing cataracts.

“Radiation workers who operate x-ray machines, fluoroscopy units, certain unsealed and sealed radioisotopes or are exposed to other sources of gamma or high energy beta radiation are generally required to wear one or more dosimeters².”

Eye Protection: Reducing Tissue Reactions

Tissue reactions, previously referred to as deterministic effects or non-stochastic effects, describe a cause an effect relationship between radiation and some side-effects. There is a threshold dose, once exceeded, the severity of an effect increases with dose. Examples of tissue reactions include skin erythema, which can occur shortly after radiation exposure. Late tissue reactions, particularly those involving the lens of the eye, such as cataracts, can develop long after the initial radiation exposure, but still can be traced back to the original exposure.

Radiation-Associated Cataracts 

Two separate studies published in 2010 reported that interventional cardiology personnel have an increased risk of developing cataracts, a clouding or opacity of the eye that hinders vision. In a recent study, Radiation Cataract Risk In Interventional Cardiology Personnel (October of 2010), Vano et al tested 116 exposed interventional cardiologists, nurses, and technologists for radiation cataracts and compared them to 93 unexposed control personnel. Thirty-eight percent of the cardiologists, with a cumulative median lens dose of 6.0 Sieverts, developed cataracts, compared with 12 percent of the controls. Twenty-one percent of the other medical personnel, who were exposed to a cumulative median lens dose of 1.5 Sieverts, developed radiation-associated lens changes attributed to ionizing radiation exposure.

The second study, Risk For Radiation-Induced Cataract For Staff In Inventional Cardiology: Is there reason for concern? (November 2010)examines the prevalence of radiation-associated lens opacities among interventional cardiologists and nurses and to correlate with background radiation exposure. The results of the study demonstrated a dose dependent increased risk of posterior lens opacities for interventional cardiologists and nurses when radiation protection tools are not used. Although, a study of a larger cohort is needed to confirm these findings, the results suggest ocular radio-protection should be used.

Radiation Eye Protection 

Our eyes are one of our most valuable organs, without properly functioning eyes even the most routine tasks can become extremely difficult to complete. “Eyes are delicate and precious” says Dr. Andrew Lwach, spokesperson for the American Academy of Ophthalmology. When working near and around ionizing radiation it is important to protect your eyes from potential exposure by wearing lead glasses. Radiation safety glasses, commonly referred to as lead glasses, are designed to protect the lens of the eye by reducing the amount of radiation that is permitted to pass through the leaded glass lenses.

Conclusion 

According to a study, Comparing Strategies For Operator Eye Protection In The Interventional Radiography Suite, published in November of 2010, the “use of leaded glasses alone reduced the lens dose rate by a factor of five to 10.” The operator lens radiation dose rate was recorded with a solid-state dosimeter with nonleaded and leaded (0.75mm lead equivalent) eyeglasses. Lens dose measurements were obtained in right and left 15 degree anterior obliquities with the operator at the upper abdomen and during digital subtraction angiography (two images per second) with the operator at the patient’s groin.

Lead Glasses 

Today, lead glasses come in a wide-variety of styles and configurations including wraparound, goggles, fit over, economy, plastic, metal, and designer frames. For example, metal frames are available with frontal (lens) and lateral radiation(side shields) protection offering 0.75mm and 0.35mm lead (Pb) equivalency respectively.

The industry standard 0.75mm lead equivalency SCHOTT SF6 radiation safety glass lenses provide protection from harmful radiation exposure. The lenses have been tested (CE Certified for Radiation Reducing Eyewear) at 100 kV and have a nominal lead equivalence of 0.75mm Pb and the side shields offer a nominal lead equivalence of 0.35mm Pb at 100 kV. Lead glasses are an essential piece of personal protective equipment that will help reduce the amount of radiation exposure to your eyes.

 

3 Rugged Oakley Radiation Eye Protection Lead Glasses

New Lead Glasses From Oakley

We are excited to announce the addition of a new line of high-quality and durable radiation eye protection lead glasses from Oakley. There are three models available including the classic Oakley Straight Jacket, the Oakley Crankshaft, and the Oakley Fives Squared. These new frames are a welcomed addition to our extensive selection of radiation eye protection and that provides our customers with a stylish and unique answer to traditional radiation eye protection.

 Straight Jacket® Lead Glasses

//universalmedicalinc.wistia.com/medias/o9312i2thx?embedType=seo&videoWidth=600

The aggressive styling combined with over a decade worth of research has produced the Oakley Straight Jacket radiation glasses. These lightweight and durable stress resistant Straight Jacket frames utilize Oakley’s O-Matter® frame technology and are engineered to provide you with all-day comfort and performance.

Part of the Oakley active line, and available in a variety of colors, these frames offer protection that meets ANSI standards for both high-velocity and high-mass impact.

Designed to fit medium faces, the Straight Jacket frame utilizes soft Unobtanium components to increase grip with perspiration around the nose and ears, ensuring a snug fit.

For those that define style on their terms, the Oakley Straight Jacket Radiation Protection Lead Glasses provide you with unmatched comfort, performance and eye protection from the harmful effects of ionizing radiation.

Crankshaft™ Lead Glasses

//universalmedicalinc.wistia.com/medias/1qn87f98v0?embedType=seo&videoWidth=600

Fusing radiation protection with the inspired smooth styling of the popular Oakley Gascan® and Fuel Cell™ designs comes the ultimate in radiation eye protection, introducing the revolutionary Crankshaft Radiation Glasses.

The lightweight and durable stress-resistant Crankshaft frames, available in a variety of colors, utilize Oakley O-Matter frame technology providing you with all-day comfort and performance.

Part of the Oakley Lifestyle line, these wraparound frames improve side protection and are designed to comfortably fit medium to large faces.

Achieve a new level of performance and style while protecting your eyes from radiation with the innovative Crankshaft Radiation Glasses.

Fives Squared Radiation Protection Lead Glasses

//universalmedicalinc.wistia.com/medias/rixwj3wms2?embedType=seo&videoWidth=600

Faces are not one size fits all, your radiation glasses are no exception. Introducing the Fives Squared Radiation Protection Glasses, specifically designed for small to medium faces, that feel as great as they look.

Constructed of Oakley’s lightweight and durable stress-resistant O-Matter material, this frame is engineered to provide you all-day comfort and performance by utilizing Oakleys unique condensed cranial geometry.

The patented hydrophilic Unobtainum nose pads reduce slipping by increasing grip with perspiration, providing you with a snug and secure fit.

The dimensional reliefs, metal icons and sculpturally integrated hinges with dual action cams, the Fives Squared frame is the perfect blend of sophisticated styling and performance eye protection.

When ordinary radiation protection glasses just don’t fit, look no further, the Fives Squared Radiation Glasses is your answer to comfort and protection.

Lead Glass Lenses 

All three of the frames are outfitted with SCHOTT Radiation Safety Glass Lenses that provide the industry standard 0.75 millimeter lead equivalency and are held securely in place by Oakley’s unique Three-Point Fit technology, ensuring safety and long lasting performance.

Frame Personalization 

You can leave your mark by adding the option of a personalized imprinting of up to 35 characters on the outside of the frame arm and enhance the performance of the lead glass lenses with the optional fog-free or anti-reflective coatings. These customizations and enhancements are available for all three frames.

This is an exciting addition to our radiation eye protection line-up and if you would like to be notified of any future radiation eye protection glasses subscribe to our blog and we will notify you of upcoming product releases.

5 Ways To Minimize Your Occupational Radiation Exposure

Minimizing Occupational Exposure

“The ideal dose is the least amount of radiation possible to produce an acceptable image.”

1. Time

Time is one of the three basic safety measures to reduce external radiation exposure. It is important for healthcare personnel to limit the amount of time spent in close proximity to the radiation source when exposure to the radiation source is possible. Reducing the time of an exposure reduces the effective dose (radiation) proportionally. Consequently, the less time you are around the equipment, the smaller your exposure will be.

2. Notification by Radiation Equipment Operator

Before any treatment or procedure, it is the responsibility of the trained and certified radiation equipment operator to notify healthcare personnel in the x-ray or treatment room prior to the activation of radiation producing equipment (RPE).

Any piece of equipment in which x-rays are produced electrically are classified as radiation producing equipment or RPE. These tools are used in a variety of medical applications including radiography, mammography, computed tomography, and fluoroscopy.

3. Fluoroscopic Procedures

Healthcare personnel performing fluoroscopic procedures must ensure that the patient is kept as close as possible to the image intensifier side of the fluoroscopic unit and away from the tube side of the unit. All healthcare personnel involved in the fluoroscopic procedure must stand on the image intensifier side of the fluoroscopic unit, whenever possible, to reduce the radiation exposure. Standing on the the same side as the image intensifier radiation intensity is decreased.

4. Avoid Direct Beam Exposure

Healthcare personnel assisting with radiological procedures must avoid holding the patient manually during a radiographic study due to the risk of direct beam exposure.  Any individual holding or supporting a person during radiation exposure should wear protective gloves and apron with a minimum of 0.25 millimeters lead equivalent. Under no circumstances should individuals holding or supporting a person’s part of their body be directly in the primary beam. Healthcare personnel must avoid exposing any body parts to direct x-ray beam exposure.

5. Utilize Shielding

Whenever possible, appropriate shielding should be used to provide attenuation of the radiation being delivered to the healthcare personnel who are potentially exposed. Healthcare personnel must keep all body parts out of the direct x-ray beam. There are a variety of shielding options available and may include, but are not limited to:

Specific Shielding Applications

Healthcare personnel who may have to stand with their backs exposed to the radiation beam must wear wrap-around aprons to decrease the risk of radiation exposure.

Bone and Bone Marrow Protection

When healthcare personnel are in close proximity to the radiation beam they should wear an appropriate lead or lead equivalent apron of sufficient length to shield the upper legs and protect the long bones and bone marrow from increased doses of radiation.

Thyroid Protection 

Healthcare personnel must wear a thyroid collar to protect the thyroid whenever the likelihood of the procedure places them at a higher risk of increased exposure.

Female Healthcare Personnel 

Female healthcare personnel must protect their breasts from radiation exposure by utilizing an apron that completely covers the area.

Eye protection

Healthcare personnel must shield the lens of the eye by using leaded eyeglasses with wrap-around side shields or leaded face shields to reduce scatter radiation when it is anticipated that increased fluoroscopic time may be necessary.

Limiting Radiation Exposure 

Reducing radiological exposure in healthcare settings is important for both occupational workers as well as patients. The following guidelines are based on the radiation safety principles of time, distance, and shielding. By following these guidelines, you can reduce your occupational exposure to radiation.

 

//www.slideshare.net/UniversalMedicalInc/5-ways-to-minimize-your-occupational-radiation-exposure

 

 

Note: This information included in this post is intended for general reference information only. The information provided is not a substitute for professional advice and should not be relied upon in the absence of such professional advice.

X-Ray Protective Apron Care: 9 Do’s And Don’ts

Proper X-Ray Protective Apron Care and Use

X-ray aprons serve a very specific purpose, to protect and shield you from the potentially harmful effects of ionizing radiation. Shielding, one of the three concepts of basic radiation safety, should always be used when the use of time and distance principles are not possible.

Protective x-ray aprons constructed of lead or a non-lead equivalent are designed to protect the radiosensitive areas of the body when it is necessary for the healthcare worker to be near the source of radiation. Typically, x-ray aprons will offer frontal protection of 0.5 mm lead equivalency. In some instances, wrap-around x-ray aprons are required when medical personnel will have their backs exposed to the radiation source.

By learning the proper way to maintain and care for your x-ray apron, you will ensure that you are properly protected and you will extend the life of the apron. Below are the four do’s and the five don’ts of proper x-ray apron care. After reading this post, you will know how to keep your x-ray apron looking good while also keeping yourself protected against the harmful effects of ionizing radiation.

X-Ray Protective Apron Do’s 

1. Inspect and Check Apron For Defects, Cracks, Creases, and Perforations 

Place the x-ray apron on a flat surface and visually check all the seams as well as the outer and inner covers of x-ray apron for any visible damage. Next, check the belts and fastening devices to confirm that they are in good condition. Lastly, inspect the surface of the apron with your hands to locate any potential lumps, cracks, sagging or separation from the apron seams. If the apron condition appears to be suspect, it should be inspected radiographically. “Rejecting an apron depends on the location, area size and number of flaws. It is best to keep the number of flaws to a minimum¹.”

Note: It is recommended that you follow the manufacturer’s recommendations and/or the state regulations regarding the proper care and use of lead protective equipment. 

2. Clean Regularly

X-ray Aprons should be cleaned daily and deodorized by scrubbing with a soft bristle brush, using cold water and a mild detergent. Completely remove cleaning residue by thoroughly rinsing with clean, cold water.

Apron Cleaning Tips

To ensure x-ray aprons are not damaged while cleaning, follow these helpful tips:

  • Never use products that contain bleach.
  • Do not soak or submerge x-ray apron in water.
  • Do not machine launder, autoclave or dry-clean.
  • Once cleaning is complete, if possible, hang the apron on the designated apron wall rack to air dry.

3. Properly Store X-Ray Aprons

The x-ray apron manufacturer’s recommendation regarding the proper handling and storage of the apron must be strictly observed. When not in use x-ray aprons must be stored on hangers to prevent cracks in the protective lead. If possible, do not store the x-ray apron on a flat surface. Aprons should be hung by the shoulder or on an approved apron hanger. Aprons should never be folded or creased, to avoid damaging the lead. “Cracks in the lead lining can develop at the fold, reducing the useful life of the apron¹.” Hook and loop fasteners must be secured properly to avoid snagging or tearing of fabric, always store apron with fasteners completely secured.

4.  Dispose Of Lead Aprons Properly

X-ray protective aprons that contain lead cannot be disposed of as municipal solid waste. Consequently, they must be disposed of as hazardous waste or recycled. The Environmental Protection Agency encourages recycling and reuse rather than disposal. According to the EPA, if the lead shield or apron can be reused by another business for its intended purpose then it remains a product, therefore it is not classified as waste or hazardous waste. Recycling the lead apron is the preferred method since it keeps the lead out of the landfill and extends the useful life of the lead apron. When recycling is not an option, you can contact a disposal service to properly dispose of the lead material.

X-Ray Protective Apron Don’ts 

5. Sit While Wearing Your Apron

Unless the x-ray apron has been designed specifically for seated procedures, you will want to avoid sitting while wearing your apron. Cracks in the lead lining can develop while wearing the apron if seated. Also, you will want to avoid sitting on the apron for the same reason.

6. Expose Apron To Extreme Temperatures 

To prevent damage to the apron, you will want to avoid exposing your x-ray apron to extreme hot or cold temperatures or to direct sunlight.

7. Lean Against Pointed Objects or Sharp Edges

Avoid storing sharp objects in the pockets. X-ray aprons can become damaged while leaning up against sharp or pointed objects, creating perforations in the lead lining and reducing the attenuating qualities of the lead.

8. Store Aprons Over Chair Backs or Equipment

Laying aprons over a chair back or piece of equipment can create creases in the lead lining and can reduce the useful life of the apron.

9. Fold Aprons

To prevent damage to the lead lining, avoid folding, wadding or creasing your x-ray apron.

Ensure Reliable Performance 

To ensure safe performance, as well as keeping your x-ray apron looking good for years to come, we strongly recommend that each x-ray protective apron is thoroughly inspected upon receipt and at regular intervals and properly stored when not in use.

X-ray aprons should be evaluated every 18-24 months to determine if replacement is needed, depending on the amount of usage and general wear and tear.  If you found this post helpful, please feel free to share this post or our SlideShare presentation with your colleagues.

 

//www.slideshare.net/UniversalMedicalInc/x-ray-protective-apron-care-9-dos-and-donts

 

 

 

 

What You Need To Know About Your Laser Systems

Lasers emit a source of high-energy light, which can be focused to transmit light onto small areas. Medical lasers have been used in a variety of different applications and procedures for many years. They are used in many clinical, surgical, cosmetic, diagnostic and dermatologic procedures.

Laser Safety glasses are a primary safety requirement and should be worn at all times during laser procedures. It is a crucial that the operating laser and protective eyewear match. This post will highlight a few common lasers and their many applications in the medical arena.

YAG Lasers (Nd:Yag and Er:Yag) are commonly used in the following medical procedures: eye surgeries, dentistry, skin restoration treatments, hair removal, orthopedic procedures and more. This type of laser produces short-pulsed and high-energy light beams giving the ability to cut, perforate and separate tissue. All Yag lasers can be operated in continuous/pulsed or Q-switched mode. Yag Laser Safety Glasses will keep your medical staff and patients protected during Yag laser applications.

CO2 Lasers (carbon dioxide lasers) are very useful in surgical procedures because biological tissue absorbs this frequency of light well. Some medical uses are skin resurfacing, dermabrasion, treatments of skin conditions, microsurgeries and more. It is important to make sure all your medical personnel are properly trained for using and working around high powered lasers. Accidents can easily take place without the appropriate training and education.

Diode Lasers are often used in dentistry and medical applications and have the ability to emit many different ranges of wavelengths. Common medical uses for the diode lasers are hair removal, skin rejuvenation, varicose vein removal, dental applications, treatments of macular degeneration and carpal tunnel syndrome, etc. Protective eyewear, like the Diode Safety Laser Glasses should be stored in a protective unit for safe keeping when they are not being used. Safety glasses dispensers will help keep glasses clean and organized.

Alexandrite Lasers are often used in cosmetic and dermatologic treatments also including fluorescence diagnostics. These lasers were developed to isolate and emit certain wavelengths of light to be used in a variety of medical and scientific purposes.

Your facility should be compliant with ANSI standards (Safe Use if Lasers in Health Care) and the U.S. Occupational Safety and Health Administration, both require staff to wear laser safety glasses or goggles when operating or around Class 3b and Class 4 lasers. These lasers can cause significant injuries to the eye, including partial/full loss of vision. There are many other important types of laser systems used in the medical setting and it is important to know the safety measures that are needed with each one. If you have any comments of questions, please let us know below!

Hospital Acquired Infections (HAI) Are More Common Than You May Think

Did you know approximately 1 out of every 20 patients who are admitted into the hospital will pick up a hospital-acquired infection during their stay? You probably know someone who has acquired an infection while staying in the hospital, but might not realize how common it is. A majority of the time, these hospital-acquired infections (HAI) are often preventable.

Hospital acquired infections typically occur to a patient 2-3 days after being admitted into the hospital. HAI often require patients to stay longer in the hospital, which also includes a longer recovery time. With a longer stay and recovery time, the cost of being in a hospital increases.

Who is more vulnerable to acquire hospital infections?

  • Young children (usually newborn babies or sick children)
  • Elderly people
  • People with existing medical conditions (for example, diabetes)
  • People who have diseases that compromise their immune system or those in chemotherapy treatments or being treated with steroids.

Most common types of hospital acquired infections

  • Pneumonia (lung infection)
  • Wound infections
  • Urinary tract infection (UTI)
  • Bloodstream infection

What are other risk factors associated with an HAI?

  • Long stay at the hospital can increase your risk for contracting a hospital infection.
  • Not properly washing your hands by hospital staff and patients.
  • The length or type of operation or surgical procedure.
  • Medical equipment that isn’t properly used or sterilized can introduce possible infection into a patient.
  • Any wound or surgical incision are inclined to infections.

How to reduce your risk of an HAI?

  • Before going to the hospital, stop smoking, keep a healthy weight, let your doctor know of any existing illnesses and manage your diabetes appropriately.
  • During your stay, make sure to wash hands properly.
  • During your stay, let your nurse know of any unclean or contaminated items in your room.
  • Ask family and friends not to visit you if they are not feeling well.

Some people are more susceptible to hospital infections compared to others. It’s important to bring awareness to hospital acquired infections, since they have become more and more common.