Gold Standard Cleaning For X-Ray Aprons & Lead Wearables

What Does Gold Standard Cleaning Look Like For X-Ray Aprons And Lead Wearables?

Thus far in this lead apron based blog series, we have examined the infection issues and concerns associated with contaminated lead x-ray aprons and the science behind how staff members can easily test such surfaces for contamination using ATP testing.

This third blog entry will examine methodologies and practices utilized by clinical staff and facilities in the “cleaning” and maintenance of these protective lead wearables, and also explore what “cleaning” such a surface really entails. In discussing bioburden levels in the previous blog, we addressed how one cannot judge cleanliness on a surface by appearance alone.  Let’s take a deeper dive into what it means to truly clean and sanitize these protective, lead garments.

Survey Says…

In researching the topic, speaking with professionals at symposiums and inquiring with colleagues and peers, there is little consistency across the continuum of care with how these garments are cleaned and/or serviced. Shockingly, a number of Radiology, Cath Lab and Operating Room staff have lamented that such surfaces “never” get cleaned, while other staff and administrators have shared that such surfaces are sometimes cleaned, “when the case load is light on a Friday” or “on the midnight shift by the environmental services department.” Both patient and staff safety are at risk due to lack of staff compliance and clinical efficacy issues posed through improper cleaning practices.

Online research lead to a few administrators sharing that they ran these lead aprons through a cart washer, which lead manufacturing companies clearly advise not to do. Clinicians have also shared that they try to use products such as Lysol or Febreeze to “eliminate the odors” yet admit the lead wearables still aren’t “clean.” One of the more popular concepts considered in attempting to clean and service these wearables entails the discussion of “using sanitizing wipes” on such high-touch surfaces.  Unfortunately, the use of these wipes alone does not properly clean and sanitize the garments.

Pesky Directions

There are a number of sanitizing/disinfecting wipes on the market that some clinicians claim to use on lead aprons and wearables. When taking a closer look at the labels on these products, one may very well discover that most wipes are actually not recommended for use on lead wearables. Additionally, some wipes contain bleach and corrosive agents, which are both advised not to be used on aprons, according to the companies that manufacture them. A majority of the wipes on the market today are indicated for use on “non-porous” surfaces such as tables, bed rails, door handles, etc. rather than a porous surface such as a nylon covering of a lead wearable. Though the use of wipes might afford convenience to the user, the real issue with doing so lies in their clinical inefficiency in successfully cleaning the surface, not to mention completely removing any bioburden.

Wax Then Wash?

If your car had dirt, road tar and bird droppings on it, would you attempt to wax it in that condition?

For best outcomes, you would first clean and remove those elements before attempting to wax the car.  The same is true for other surfaces, including lead wearables.  Professionals who routinely assess bioburden understand the importance of a proper cleaning before sanitizing or disinfecting an item.  If an item is not properly cleaned and organic matter remains, nutrients also  remain to better foster the growth of surviving bacteria or future bacterial contamination.  This is by definition a risk factor for increased hospital associated infections.

All You Can Eat Buffet

In watching the news of late, one can gather that the world of microbiology is ever changing.  Bacteria are highly adept at persisting.  Through changes in their DNA they can gain antibiotic and/or antiseptic resistance, and these changes can happen through mutations or through integration of foreign DNA, but where would they find foreign DNA?  When bacteria die and the cells break open, then the DNA is accessible to the remaining bacteria.

The Problem with Sanitizing and Disinfecting Wipes

When facilities only use wipes on a surface and don’t completely remove the debris, they are in essence creating an “all you can eat buffet” for the surviving bacteria to thrive upon. If the dead bacteria had antibiotic or antiseptic resistance markers, now that DNA is fair game for susceptible bacteria to gain resistance!   In fact, numerous studies have shown that certain bacteria can pick up various genes from different species that makes them more pathogenic (either by making it antibiotic resistant, antiseptic resistant, or by allowing it to survive in a host better).

Layers Of Bacteria? Gross?

As if that wasn’t scary enough, what if I told you that some bacteria could gain antibiotic and antiseptic tolerance simply by growing?  (IT IS TRUE!)

Some bacteria can attach to a surface (particularly porous or textured surfaces such as lead wearables) and as they grow and form groups of bacteria (colonies) that can then form a biofilm.  Biofilms are clusters of bacteria that have attached and produced an extracellular polymeric substance (EPS) which are essentially a protective coating.

Extracellular Polymeric Substance (EPS)

EPS consists of DNA, proteins, lipids (fats) and polysaccharides (sugars).  This coating protects the bacteria inside the human body from cells that can either tag the bacteria for destruction or destroy the bacteria outright.  Externally (on a surface) it can protect the bacteria from anti-microbial drugs or antiseptic agents.  In fact, bacterial biofilms are 10 – 1,000 times more resistant to antibiotics than there standalone bacterial counterparts.  Their EPS is essentially a bacterial Teflon coating.  This Teflon coating only gets stronger when multiple species of bacteria co-inhabit the same biofilm, and if these attributes weren’t scary enough, bacteria in a biofilm can sense their microenvironment and may even produce toxins while in a biofilm that they wouldn’t normally produce.

Biofilm Life Cycle

Like all living things, biofilms have a life cycle, and a part of that life cycle involves dispersion of some bacteria that are then free to go and attach elsewhere, including in a human host. In 2007, the National Institutes of Health estimated that approximately 80% of chronic infections were biofilm related; thus, biofilms remain a serious problem in many facilities. When surfaces such as the nylon covering of a lead wearable are not cleaned properly, it allows different bacteria to begin to congregate.

Layers of Bacteria

Thinking this all sounds like something from a fictional book or movie, as if biofilms can only exist in some weird lab conditions or in some rare disease?  Nope!!!!

The most common example of a biofilm is one that everyone is probably familiar with, but may not realize is a biofilm, is dental plaque!  Biofilms are so hard to remove from surfaces that companies have spent millions of dollars trying to prevent their formation.  If you think about dental plaque, it makes sense.  We brush our teeth twice a day to best prevent plaque.  Unfortunately, when it comes to medical devices or any surface (particularly a porous or textured surface) in a medical treatment facility (such as lead wearables), biofilms can form once the surface is exposed to organic matter such as blood.  Now with the mental picture of layers of bacteria (such as plaque) on surfaces in medical treatment facilities, consider that some high-touch surfaces, such as radiological shields and aprons have not been properly cleaned for years (if ever!)

Elbow Grease Helps Break Up Biofilms

Biofilms are so tolerant of antimicrobials and antiseptics, that even the CDC positions the best way to remove a biofilm is to disrupt it physically, and they have included the ‘use of friction’ in their definition for proper cleaning.  Studies have been done that show that physically disrupting the biofilm by using friction is the primary means for destruction of the layers and thus removal of the biofilm.  (In the example of dental plaque, this would be equivalent of one going to the dentist and having them scrape the teeth in order to remove the plaque.)  The procedural process and outcomes are different when looking at the process of “cleaning” and “sanitizing” and it takes both of these separate processes to eradicate biofilms from porous, high touch surfaces. The surface on a lead wearable first needs to be cleaned before it can then be sanitized.

  • Cleaning – According to the CDC, cleaning entails the use of EPA registered products, coupled with the use of friction to physically remove dirt, microorganisms and bioburden and then removing/rinsing them away from the surface. Though a vast majority of the bioburden is removed during this process, the cleaning process does not always remove 100% of all bioburden & microorganisms.
  • Sanitizing – This process then “inactivates” 99.9% of all remaining microorganisms on environmental surfaces if allowed to sit visibly wet or “dwell” on the surface for the recommended amount of “dwell time” as per manufacturer instructions and guidelines.

Cleaning and Sanitizing really can’t be done in one-step, let alone with just a wipe. When you go to the dentist, the first step in the process is to scrape the plaque from the teeth before they are polished, just like your car needs to be adequately washed and dried, before it can be then waxed. Cleaning and sanitizing of a neglected surface such as a lead apron cannot be accomplished in one step either. In an effort to address such biofilms “head on” X-Ray apron servicing companies, such as Radiological Care Services (IN) are implementing multi-step, cleaning and sanitization programs for X-ray aprons and lead wearables. These programs are built in accordance with governing bodies, such as the CDC, JCAHO, AORN and HFAP, which position that surfaces should first be cleaned, before attempting to sanitize or disinfect them.

Stay Tuned For The Next Post

Stay tuned for the next follow up blog post, as we look specifically at what policies, regulations and expectations these governing bodies have of high touch surfaces, such as X-ray aprons and lead wearables. Between now and then, go brush your teeth and think about the layers of bacteria building up on lead wearables and aprons as they continue to invite bacteria to the biofilm party!

About The Author:

Kathleen R. Jones received her BS from Purdue University (West Lafayette) in Biology specializing in Genetics and Microbiology.   After working for five years in Quality Control she then completed her MS at Purdue University in Indianapolis.  Her growing interest in Infectious Diseases lead her to the Uniformed Services University of the Health Sciences where she obtained a Doctorate in Emerging Infectious Diseases.  Kathleen has a passion for progressive sciences and initiatives, and employs her keen understanding of the biofilm formation and elimination processes into her research and work.

Evaluating Microorganism Levels On X-Ray Aprons And Lead Wearables: The Science Of ATP Testing

How Have Microorganisms and Bioburden Been Measured?

In the previous blog post regarding X-Ray lead aprons, we explored the history of healthcare associated infections or HAIs, and how transmission risks are posed to patients and staff via contaminated “high touch, non-critical surfaces,” including X-Ray aprons and protective lead wearables.  In laying out the content of this blog, I was reminded of the phrases, “things aren’t always as they appear” and “don’t judge a book by its cover.” Is it possible that newer (clean looking) X-Ray aprons can carry a higher level of biological contamination when tested in comparison to older X-Ray aprons (which are dirty looking & smelling)? It is completely possible and plausible due to the concept of bioburden.

What is Bioburden?

Bioburden is defined in numerous medical dictionaries as the number of microorganisms contaminating an object.  So how does one assess for bioburden?  The gold standard for assessing for bacterial/fungal contamination has been to assess for colony forming units or CFUs.  A CFU equals one viable bacterium that has the ability to spread and replicate.

3 Main Ways to Measure CFUs: 

  1. A scientist could dilute the sample and count the bacteria by microscopic examination or through the use of a cell counter.  However, if bacteria are too small or clump together, then this method is problematic.  This method will yield total bacteria counts, both living and dead.
  2. A scientist could use Optical Density (OD) to estimate the number of viable bacteria in a sample.  This is where the scientist measures how cloudy a liquid culture of bacteria is.  While the bacteria are actively growing the liquid culture should continually become more and more cloudy.  Again, this method will yield total bacteria counts, both living and dead.
  3. A scientist could make serial dilutions of a liquid culture and plate out the bacteria in known dilutions until they can count single colonies and extrapolate back to figure out total CFU in a sample. This method only yields viable bacteria totals.

4 Challenges Associated with Bioburden Assessment

Assessing for bioburden (microorganisms) by calculating CFUs is not as easy or straight forward as one might imagine.

  1. The first challenge posed is that one needs to have a lab in which to grow bacteria, and depending on the bacteria one is dealing with there are different governmental regulations to follow.
  2. The second challenge presented is that of time, one needs to have the time and equipment to properly grow the bacteria/fungus.  Different species of bacteria or fungus grow at different rates, for example, culturing of bacteria on plates can take anywhere from overnight to multiple days.
  3. A third and very important challenge is posed by the bacteria and fungus themselves.  They are similar to people in the fact that not all of them grow and thrive under the same conditions.  In lab work, if only one kind of food source is used, one will only be able to assess for bacteria that grow on that particular food source.
  4. Finally, one needs to have a trained technician who knows how to assess which bacteria to grow under the correct conditions and then also how to properly count the bacteria.

While assessing for CFUs has traditionally been viewed as the gold standard for assessing bioburden, and it is vitally important for various microbial studies, it is not a good way to assess bioburden in real time.  It can be complicated.

What is ATP and How is it Evaluated?

What if there was an easier way to determine surface levels of biological contamination?

What if there was an easier way to assess for a molecule that is found only in living cells, both bacterial and human living cells?

There IS an easier way to evaluate for this molecule in real time (by using a simple swab and handheld reader), and it can be used by any hospital staff member as a surrogate for such complicated CFU work.  Let me introduce you to the molecule known as the “molecular workhorse,” called adenosine triphosphate (ATP).

Adenosine Triphosphate (ATP)

ATP is an energy molecule utilized by cells. It is present in humans, animals, plants and microbial cells.  ATP levels rise as a cell is undergoing apoptosis (programed cell death), but is generally consider to be completely degraded within 30 minutes of cell death (1).  This makes ATP a useful marker for the presence of unwanted biological contamination, including organisms that can cause infection and disease.

Okay – Get to the Point!

An increase in biological cells on a surface results in an increase in the amount of ATP present on that surface, thus making ATP an effective marker for the assessment of the hygienic status of an environmental surface. Simply stated, the amount of ATP present on a testing swab is a quantitative measurement of the cleanliness of the surface tested! In fact, ATP cell viability assays were determined to be the fastest, most sensitive, and least prone to artifacts, partially due to a lack of an incubation period (2).  The sensitivity of laboratory cell based ATP cell viability assays can detect fewer than 10 cells per well (2).  This technology has been modified to create a portable, ATP bioluminescence test, using a swab instead of plated cells.  This now allows for a real time assessment of bioburden on site.  These tests have been used to assess bioburden in many healthcare settings, including the ICU (3).  ATP measuring units, called luminometers, are handheld, user friendly, and display the results in seconds. (It doesn’t take a scientist to use an ATP luminometer!) The read out of an ATP bioluminescence test is not in CFUs, but is in relative light units or RLUs.  In the past, some scientists have questioned the validity of using a bioluminescence test instead of assaying for CFU.

Is There a Correlation Between CFUs & RLUs? 

Like most assessments, ATP bioluminescence assays also have limitations, but they are an excellent surrogate that allows the everyday staff member to assess bioburden in real time.  Those new to ATP bioluminescence testing often inquire about a correlation between CFUs and RLUs.  (Most laboratory microbiologists have the capability to perform CFU testing, and are not confined to real time assessment of bioburden.)  The most controlled way to achieve this is to look at different known amounts of CFUs and assess whether or not the RLUs increase accordingly.  That is exactly what Dr. Sciortino’s group did when they assessed three different portable ATP bioluminescence kits for their ability to detect various CFUs of two different HAI relevant bacteria (Staphylococcus aureus and Acinetobacter baumannii) and one strain of fungus (Candida albicans).

What they discovered was there was a linear relationship between bacterial CFUs and RLUs for all three luminescence kits, and for two of the three kits between fungal CFUs and RLUs (1).  Such research validates that the use of ATP luminometers can be used to assess for bioburden on surfaces in real time.  This research, plus Dr. Jaber’s study, in which 25 lead aprons were cultured for CFUs and showed that 21 were colonized with Tinea species (the family of fungus that causes ringworm) and 21 were colonized with Staphylococcus aureus, of which 3 aprons were colonized with MRSA (4), validates the ATP bioluminescence results for X-ray aprons and protective lead wearables.

In fact, these X-ray aprons and protective lead wearables, which are worn throughout many different areas within a healthcare system, including the operating rooms, cath labs, radiology/imaging areas, emergency rooms and beyond are regularly testing with RLU readings in the THOUSANDS to HUNDREDS OF THOUSANDS (5), which is scary. The bottom line is regardless if you are a classically trained microbiologist used to looking at CFUs or a hospital staffer looking at luminometer readouts in RLUs, when surfaces inside an OR or Cath Lab are testing in the hundreds of thousands range, it is a problem!

Is ATP Testing Growing in Use?

Through utilization of ATP luminometer testing systems, companies like Radiological Care Services (Indianapolis) are able to enter a facility’s Cath Lab, OR or Radiology Department and test lead apron inventories on site, providing real time numbers (bioburden levels) in a matter of seconds. An advocate for ATP luminometer testing, Dr. Sciortino even states, “ATP system monitoring may uncover the need for new disinfectant designs that adequately remove hospital surface biofilms, rendering used hospital equipment to its native state whereby a zero reading by ATP monitoring can be achieved” (1).  If you look back at the first blog post, “Contaminated X-Ray Aprons and The Risk of HAIs”, I positioned that “using wipes alone” was insufficient and through the use of ATP testing, Dr. Sciortino could be inferring a similar position.

Looking Ahead…

In the next blog post, we’ll specifically look at the science/methodology behind the use of sanitizing wipes and we’ll further explore the differences between true “cleaning” and “sanitization.” We’ll later examine what the governing bodies, such as AORN, CDC, HFAP and JCAHO state regarding their expectations of such surfaces within healthcare facilities. Understanding the science behind HAIs, testing for biological contaminants on surfaces, biofilms, and the difference between “cleaning” and “sanitization” will help us understand that current healthcare protocols in regards “non-critical, high touch surfaces” need to be changed in order to better protect hospital patients and staff.

About The Author:

Kathleen R. Jones received her BS from Purdue University (West Lafayette) in Biology specializing in Genetics and Microbiology.   After working for five years in Quality Control she then completed her MS at Purdue University in Indianapolis.  Her growing interest in Infectious Diseases lead her to the Uniformed Services University of the Health Sciences where she obtained a Doctorate in Emerging Infectious Diseases.  Kathleen has a passion for progressive sciences and initiatives, and employs her keen understanding of the biofilm formation and elimination processes into her research and work.

Sources:

  1. Sciortino, C. V. and R. A. Giles.  2012. Validation and comparison of three adenosine triphosphate luminometers for monitoring hospital surface sanitization: A Rosetta Stone for adenosine triphosphate testing.  AJIC.  40 (e233-9)
  2. Riss T.L., R.A. Moravec, A. L. Niles, H.A. Benink, T.J. Worzella, L. Minor. Minor, L, editor.  2013,  Cell Vialblity Assays. In: Sittampalam G.S., N.P. Coussens, H. Nelson, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Available from: http://www.ncbi.nlm.nih.gov/books/NBK144065/
  3. Moore, G., D. Smyth, J. Singleton, P. Wilson. 2010. The use of adenosine triphosphate bioluminescence to assess the efficacy of a modified cleaning program implemented within an intensive care setting.  AJIC. 38(8):617-622 DOI: http://dx.doi.org/10.1016/j.ajic.2010.02.011
  4. Jaber, M., M. Harvill, E. Qiao.  2014.  Lead aprons worn by interventional radiologists contain pathogenic organisms including MRSA and tinea species.  Journal of Vascular and Interventional Radiology.  25:3:S99-S100.  DOI: http://dx.doi.org/10.1016/j.jvir.2013.12.279
  5. “Outcomes: What do your numbers look like?” Radiological Care Services. Nov 20, 2014. http://www.radcareservices.com/radiolgical-care-services-outcomes.html

Contaminated X-Ray Aprons And The Risk Of HAIs

Contaminated, Dangerous, and Unacceptable: The Impact of Contaminated X-Ray Aprons and the Risk of Health Care-Associated Infections (HAIs)

Infection Prevention checklists today include many new areas of concern such as contamination in lab coats, neckties, telephones, remote controls, privacy curtains and more. X-ray aprons and protective lead wearables are worn throughout many different areas within a healthcare system, including the operating rooms, cath labs, radiology/imaging areas, emergency rooms and beyond. Clinical studies have proven that X-ray aprons silently carry a number of microorganisms – Dr. Jaber (Wayne State) cultured 25 lead aprons to discover 21 were colonized with Tinea species (the family of fungus that causes ringworm) and 21 were colonized with Staphylococcus aureus, of which 3 aprons were colonized with MRSA (1).  

The Association of periOperative Registered Nurses (AORN) makes cleaning recommendations for items such as kick buckets, stools, patient restraints, keyboards, surgical lights and more; however, lead aprons which are routinely engulfed in sweat, blood, bodily discharge and surgical debris/residue have been consistently overlooked. Healthcare systems can no longer compromise both patient and staff safety through such perilous practices.  (Note – upcoming posts will further explore “current cleaning practices,” as well as cleaning recommendations and guidelines from National Governing Bodies such as the CDC/JCAHO/HFAP and AORN.)

Health Care-Associated Infections

HAIs are the 4th largest killer in the United States, claiming 100,000 American lives each year – more deaths than AIDS, breast cancer and auto accidents combined (2).

Hospitals are meant to be safe havens.  They are meant to be a place of refuge against disease, a place to heal and a place to recover from surgery or injury.  If that is the dream, then the nightmare would be a place in which you end up more ill than you were when you were first admitted!  Unfortunately, that nightmare becomes a reality for many unsuspecting patients and staff members today. One reason for this nightmare is the acquisition of a Health Care Associated-Infection or Hospital Acquired Infection (“nosocomial infection”).

The World Health Organization (WHO) uses a 1995 definition for a Hospital Acquired Infection (HAI):

An infection occurring in a patient in a hospital or other health facility in whom the infection was not present or incubating at the time of admission.  This includes infections acquired in the hospitals but appearing after discharge, and also occupational infections among staff of the facility (3).

HAIs in our Healthcare System

Think about it – it only makes sense that hospital acquired infections would be prevalent in our healthcare systems today.  Hospitals & medical facilities are places that people congregate when they are immunocompromised and/or are sick and in need of some type of care or treatment.

World Health Organization Study

In fact, a WHO study of various hospitals in 14 countries across Europe, Eastern Mediterranean, Southeast Asia and Western Pacific regions in the late 1980s concluded that 8.7% of patients had at least one Hospital Acquired Infection equaling 1.4 million afflicted people at any one time (4-5).

Centers for Disease Control and Prevention Estimate

In the United States alone, the CDC estimates roughly 1.7 million annual hospital-associated infections, from all types of microorganisms including bacteria combined, cause or contribute to 100,000 deaths each year (6). In fact, approximately 1 in 25 hospital patients has a hospital acquired infection at any one time (7). While these statistics are startling and horrifying, sadly they do not paint the complete picture. These statistics are patient specific and do not include the number of healthcare workers and hospital staff who have also acquired Hospital Acquired Infections.

Economic Impact of HAIs

Such infections lead to additional stress, longer hospital stays, lost wages for healthcare providers and higher morbidity and mortality rates overall.  HAIs also have a HUGE economic impact.  In addition to being the 4th largest killer in America, it is estimated Hospital Acquired Infections will cost the healthcare system an additional $30 Billion (2).

Why do HAIs Occur? 

We live in a medically advanced society, so why do Health Care Associated-Infections still run rampant, and what are we doing about them?  That is a good question, but the answer is multifaceted.  The first point to consider is that patients are usually immunocompromised when in need of healthcare services. They are either already ill or they have had a procedure that puts immense stress on their bodies, e.g., a joint replacement, major illness or other surgical procedure or treatment. 

As wonderful as modern medicine is, it is not without risks.  In fact, many diagnostic and/or therapeutic procedures involve the use of a medical device, e.g, catheters, intubation tubing, scopes, etc. These devices and even many “non-critical” surfaces and “high touch objects” such as X-ray aprons and lead wearables can become contaminated when not properly cleaned and sanitized.

Healthcare facilities are a place where sick and immunocompromised patients regularly navigate and patients are often transferred between units/floors.  This allows infectious agents to travel to different areas in a hospital and expose multiple people, including patients, family and staff members.

Infectious Agents

Infectious agents (bacteria, viruses, parasites, and fungi) present their own issues.  There are species that form spores that are resistant to most mechanisms of eradication. Kramer’s group recently performed a meta-analysis of the literature and summarized that most clinically relevant species of viruses could easily survive on dry, inanimate surfaces for between a few HOURS to DAYS and clinically relevant bacterial and fungal species could survive for DAYS to MONTHS (8).  The longer the infectious agent can be found in the environment the greater the chance that it can be passed to a new host.

The Need for New Policies/Protocols

Unfortunately, Health Care-Associated Infections (HAIs) are still a substantial source of morbidity and mortality throughout the healthcare continuum today.  While recent initiatives such as improved hand washing policies have helped that burden, there are additional new policies/protocols with regards to cleaning that need to be implemented in order to address other critical “high touch objects” such as X-ray aprons and lead wearables.

Education and Awareness

Through education and open-mindedness, we can bring awareness to the importance of following the cleaning recommendations of the governing bodies, such as the CDC/JCAHO/AORN and HFAP.  In knowing that infectious agents can still adapt to become drug resistant, antiseptic resistant, and increase their ability to survive in the environment, so, we too must adapt and be open minded to new concepts in our vigilant fight against hospital acquired infections.

Oft-Overlooked: X-Ray Aprons and Lead Wearables

X-ray aprons and lead wearables can no longer be overlooked, and they will need a renewed commitment to servicing. They need to be properly cleaned prior to sanitization efforts, in accordance with the guidelines of the CDC & JCAHO.  In my next blog entry, we’ll dive into the science behind testing X-ray aprons for the presence of microorganisms and examine how these surfaces are measured and evaluated.

SPOILER ALERT – If you think you have an idea of how contaminated such surfaces are inside of our healthcare systems, you will be in for a SURPRISE!

About The Author:

Kathleen R. Jones received her BS from Purdue University (West Lafayette) in Biology specializing in Genetics and Microbiology.   After working for five years in Quality Control she then completed her MS at Purdue University in Indianapolis.  Her growing interest in Infectious Diseases lead her to the Uniformed Services University of the Health Sciences where she obtained a Doctorate in Emerging Infectious Diseases.  Kathleen has a passion for progressive sciences and initiatives, and employs her keen understanding of the biofilm formation and elimination processes into her research and work.

Sources:

  1. Jaber, M., M. Harvill, E. Qiao.  2014.  Lead aprons worn by interventional radiologists contain pathogenic organisms including MRSA and tinea species.  Journal of Vascular and Interventional Radiology.  25:3:S99-S100.  DOI: http://dx.doi.org/10.1016/j.jvir.2013.12.279
  2. “What is RID?” Committee to Reduce Infection Deaths.  n.p.  d.p.  Web.  Nov 7, 2014.  http://www.hospitalinfection.org/objective.shtml
  3. Benenson, AS.  1995.  Control of communicable diseases manual.  16th edition.  Washington, American Public Health Association.
  4. Tikomirov, E.  1987. WHO Programme for the Control of Hospital Infections.  Chemiotherapia. 3:148-151.
  5. Mayon-White, RT, G.  Ducel, T. Kereselidze, E. Tikomirov.  1988.  An internal survey of the prevalence of hospital-acquired infection.  J. Hosp. Infect.  11 (SupplementA): 43-48
  6. Klevens, RM, JR Edwards, CL Richards, TC Horan, RP Gaynes, DA Pollock, DM Cardo.  2007.  Estimating health care-associated infections and deaths in U.S. hospitals, 2002.  Public Health Rep 122:160-166
  7. Magill, SS, JR Edwards, W Bamber, ZG Beldavs, G Dumyati, MA Kainer, R Lynfield, M Maloney, L McAllister-Hollod, J Nadle, SM Ray, DL Thompson, LE Wilson, SK Fridkin.  2014.  Multistate Point-Prevalence Survey of Health Care-Associated Infections.  N Engl J Med 370:1198-1208
  8. Kramer, A., I. Schwebke, and G. Kampf.  2006.  How long do nosocomial pathogens persist on inanimate surfaces? A Systemic Review. BMC Infectious Diseases.  6:130  Doi: 10.1186/1471-2334-6-130

Why Global Handwashing Day Is Important

Handwashing with soap could prevent about 1 out of every 3 episodes of diarrheal illnesses and almost 1 out of 6 episodes of respiratory infection like pneumonia. Handwashing is a simple and inexpensive method of effectively removing germs from your hands. Global Handwashing Day is celebrated annually on October 15 worldwide.

What is Global Handwashing Day?

Starting in 2008, “Global Handwashing Day is a way to support a global and local culture of handwashing with soap, shine a spotlight on the state of handwashing in each country, and raise awareness about the benefits of handwashing with soap.” Founded by the Global Public-Private Partnership for Handwashing with Soap, Global Handwashing Day encourages school children, teachers, and families to get involved.

Did You Know?

There are 1,500 bacteria living on each square centimeter of your skin right now. Our hands spread germs; people frequently touch their eyes, nose, and mouth without even realizing it – spreading germs that can make us sick.

“Handwashing with soap is one of the cheapest, most effective ‘vaccines’ against viral diseases, from the seasonal flu, to the common cold,” said Sanjay Wijesekera, head of UNICEF’s global water, sanitation and hygiene (WASH) programmes.

Are You Washing Your Hands Long Enough?

Take a look at our helpful video on proper handwashing to learn more.

Most people do not wash their hands long enough. It is recommended that you wash your hands for a minimum of 20 seconds to properly remove germs.

Handwashing Saves Lives

“Although people around the world clean their hands with water, very few use soap to wash their hands. Washing hands with soap removes germs much more effectively.”

  • Millions of children under the age of 5 years die from diarrheal diseases and pneumonia, the top two killers of young children around the world.
  • Handwashing with soap could prevent about 1 out of every 3 episodes of diarrheal illnesses and almost 1 out of 6 episodes of respiratory infection like pneumonia.
  • 2.2 Million children die per year from diseases often prevented by proper hygiene

According to the Centers for Disease Control and Prevention “Handwashing is not only simple and inexpensive, but remarkably, handwashing with soap can dramatically cut the number of young children who get sick.”

How Can You Participate?

There are a variety of ways that you can participate in Global Handwashing Day including:

  • Make sure you and your family know when and how to properly wash your hands.
  • Visit Facebook and Twitter to learn more about Global Handwashing Day games and activities.
  • Download handwashing resources from: http://globalhandwashing.org/ghw-day/tools
  • Get social by searching for and using the hashtag #iwashmyhands on Twitter, Facebook, and other social media platforms.

Remember that properly washing your hands (for at least 20 seconds) is a simple and effective method of preventing the spread of germs that should be practiced daily. For more information on handwashing, visit the CDC’s handwashing website.

Using Gel Positioners To Prevent Pressure Ulcers

Preventing Pressure Ulcers In The Operating Room

Pressure sore, decubitus ulcer, and pressure ulcer are all terms used interchangeably to describe localized injuries to the skin and/or underlying tissue that usually occur over a bony prominence as a result of pressure, or pressure in combination with shear and/or friction.

What Is A Pressure Ulcer?

The National Pressure Ulcer Advisory Panel (NPUAP) defines a pressure ulcer as an area of unrelieved pressure over a defined area, usually over a bony prominence, resulting in ischemia, cell death, and tissue necrosis.

According to a 2009 article, Prevention of Pressure Ulcers in the Surgical Patient, in the AORN Journal; “pressure ulcers (PUs) are a serious health care problem, and it is crucial to assess how patients acquire pressure ulcers after admission to a health care facility. In the OR, factors related to positioning, anesthesia, and the duration of the surgery, in addition to patient-related factors, all can affect PU development¹. . . All surgical patients should be considered at-risk for pressure ulcer development; therefore, preoperative departments should develop and implement strategic plans for pressure ulcer prevention.”

Quick Facts

Did you know?

Number of patients affected by pressure ulcers: 2.5 million per year

Cost

  • Pressure ulcers cost $9.1-$11.6 billion per year in the U.S.
  • Cost of individual patient care ranges from $20,900 to $151,700 per pressure ulcer.
  • Medicare estimated in 2007 that each pressure ulcer added $43,180 in costs to a hospital stay.

Pressure Ulcer Management

In 2008, The Centers for Medicare & Medicaid Services (CMS) included hospital acquired pressure ulcers (HAPU’s) as a “Never Event” which marked a turning point for most facilities. “Pressure ulcer management has become a standard part of every modern hospital’s protocol¹.”

Four Major Factors Contributing To Pressure Ulcers¹

  1. Uneven weight distribution
  2. Pressure
  3. Shear
  4. Heat and humidity build up

“Pressure ulcers are a costly, debilitating, and avoidable complication of surgery².”

The National Pressure Advisory Panel (NPUAP) and European Pressure Ulcer Advisory Panel (EPUAP) created the Pressure Ulcer Prevention: Quick Reference Guide outlining risk factors for patients in the operating room.

1. The following factors increase the risk the patient developing a pressure ulcer during a surgical procedure include:

a)Length of the operation
b)Increased hypotensive episodes intraoperatively
c)Low core temperature during surgery
d)Reduced mobility on day one of postoperatively
2. Use a pressure-redistributing mattress on the O.R. table for all individuals identified as being at risk of pressure ulcer development.

Action Products manufactures O.R. overlays that are cited by AORN best practices for Pressure Ulcer Prevention. The O.R. overlays, available in standard and custom sizes, provide pressure redistribution and reduce shear effects across the entire table surface. The low profile, simple design of the 1/2 inch Akton poymer O.R. overlay maximizes effectiveness and minimizes patient movement.

3. Position the patient in such a way as to reduce the risk of pressure ulcer development during surgery.

4. Elevate the heels completely (offload them) in such a way as to distribute the weight of the leg along the calf without putting all the pressure on the Achilles tendon.

The heel support gel positioner by Action is designed to secure and protect the heel area as well as cradle the patient’s Achilles tendon area.

5. Pay attention to pressure redistribution prior to and after surgery.

a) Place patient on pressure-distributing mattress prior to and after surgery.
b) Position the patient in a different posture preoperatively and postoperatively than the posture adopted during surgery.

Types of Gel Positioners

Head & Neck Gel Positioners help protect and cradle the patient’s head and neck by stabilizing the head movement and assists in the prevention of neck overextension.

  • Lateral Head Pad with Center Dish
  • Donut Head Pads
  • Prone Headrests
  • Horseshoe Head Pads
  • Contoured Head Pad
  • Ophthalmic Headrests
  • Ophthalmic Cradle Headrests

Extremity Gel Positioners protect the patient’s arms and legs during procedures.

  • Contoured Armboard Pads
  • Armboard Pads
  • Hand/Wrist Support
  • Foot Pad
  • Heel Support
  • Stirrup Pad Set

Torso & Hip Gel Positioners provide support for the torso and upper body by providing increased stability.

  • Flat-Bottomed Chest Rolls
  • Contoured Chest Rolls
  • Chest Gel Positioners
  • Trapezoid Gel Positioner
  • Dome-Shaped Gel Positioner

Proper patient positioning and cushioning of all pressure points is a priority and using the correct padding can protect the patient from pressure ulcers.

“Procedures longer than 2 1/2 hours to 3 hours significantly the risk of pressure ulcer formation. Positioning problems can result in significant injuries and successful lawsuits.” ~Patient Positioning In The Operating Room

AORN recommends “Classifying all surgical patients as “at risk” for PU development is an appropriate preoperative intervention to successfully reduce the incidence of possible PU development.” The uncontrollable length of surgeries and effects of anesthesia are two of the main contributing factors leading to the development of pressure ulcers. Although it is impossible to eliminate the risk of patients developing pressure ulcers during surgical procedures – some patients will develop pressure ulcers from skin breakdown regardless of preventative measures. It is important to be aware of the causes of pressure ulcers and what steps you can take to minimize the risk.

Additional Information:

References:

 

Whiteboard Wednesday: Surgeon Cooling Systems

How Do Surgeons Stay Cool In The Operating Room?

Today on Whiteboard Wednesday we talk about how surgeons stay cool in the operating room. A major concern for medical staff working in the OR is fatigue caused by overheating.  Overheating is caused by the multiple layers surgeons and staff must wear for protection. During certain procedures the surgeon’s body heat is intensified, the CoolVest can help keep the surgeon more comfortable and alert.

What Is A Surgeon Cooling System?

The CoolVest System is a unique and innovative personal cooling system that is designed to keep surgeons cool and focused while performing surgery. The Single-Surgeon CoolVest System allows you to regulate your personal comfort so that you won’t perspire, suffer fatigue or lose concentration. The surgeon cooling system includes a lightweight vest that is constructed of hospital-grade ventilated nylon for maximum cooling, a variable flow control with quick-dry disconnect, wheeled cart with handle for convenient portability, and a UL listed cooler with variable flow 110V pump.

How Does The Surgeon Cooling System Work?  

The CoolVest is worn over scrubs and under surgical gowns. The tubing connection is located at the lower back of the garment to help keep the water supply tubing from interfering with the sterile field. Cooling tubes are located in the front and back of the garment for maximum cooling. The patented, thin-walled, non-kink tubing has been specifically designed for use under lead aprons.

Setup

  1. To begin, the cooling unit is filled with a mixture of approximately one gallon of water and ice (preferably block ice) or cube ice to the top of the unit.
  2. After the unit has been properly filled, you will want to attach the 8 foot insulated supply hose (quick disconnect) to the CoolVest.
  3. Apply the protective hose cover and then attach the other end of the insulated supply hose to the cooling unit.
  4. Listen for an audible click from both quick disconnect hose connections to ensure that they are properly connected.

Operation

  1. Once the supply hose has been properly protected and connected, you will want to plug the cooling unit’s electrical adapter into a grounded 110V outlet.
  2. Turn the unit on using the green On/Off power switch.
  3. Allow the unit to cycle until L.E.D indicator on Speed Control is activated (30 second pump start delay).
  4. Press “Ice Cube” on the Speed Control display on the lid of the system to start unit at desired level. L.E.D. on display will light from left to right for increased water flow. (e.g. 20-40-60-80-100% levels)
  5. To increase flow rate, press the “Ice Cube” button again, as needed, to adjust to the desired flow rate.
  6. To reset Speed Control setting: press “Ice Cube” until the surgeon cooling system stops; restart by pressing “Ice Cube” again until correct setting is indicated.

Relief From Heat While Performing Surgery

Surgeons have been impacted by excessive heat surrounding their bodies due to stress and other environmental factors. For example, neurosurgeons are required to wear appropriate radiation protective shielding (lead aprons, thyroid collars, lead glasses) while using imaging technology to protect them from the harmful effects of ionizing radiation. The use of these protective garments in addition to scrubs and surgical gowns can significantly increase the surgeon’s body temperature during surgical procedures. The increase in temperature can result in the surgeon becoming fatigued and perspiring during long surgeries which can reduce their focus and attention, resulting in a decrease in their ability to perform their tasks at the desired level.

Share Your Experiences

Have you experienced an increase in your body temperature while performing complicated surgeries? Interested in learning more? Make sure to check out our post on the Active Cooling Vest System For Surgeons In The OR!

Whiteboard Wednesday: Why Reliable Specimen Bags Are Key For Handling Laboratory Samples

Today we’re talking about reliable specimen bags for handling laboratory samples on Whiteboard Wednesday. The problem with selecting sample bags is that the user must have a reliable, high-quality bag for certain applications. Watch today’s Whiteboard Wednesday to see what types of sample bags are reliable for sampling!

Featured Product: TruLife Oasis Elite Closed Head Ring

Our featured product for today is the TruLife Oasis Elite Closed Head Ring, an excellent gel positioner to provide pressure relief for your patients. This head positioner is designed with lightweight foam with silicone Trugel, the foam and gel work together to conform to the patient’s body shake and helps distribute weight evenly.

Product Features:

  • Unique gel & foam combination conforms comfortably to the patient’s head
  • Suitable for use in many surgical procedures
  • Dimensions:
  • Adolescent: 5.5″ Diameter x 1.3″ Thick
  • Adult: 7.8″ Diameter x 1.9″ Thick
  • MRI Safe
  • Latex Free
  • Non-Hazardous

Hospital Acquired Infections (HAI) Are More Common Than You May Think

Did you know approximately 1 out of every 20 patients who are admitted into the hospital will pick up a hospital-acquired infection during their stay? You probably know someone who has acquired an infection while staying in the hospital, but might not realize how common it is. A majority of the time, these hospital-acquired infections (HAI) are often preventable.

Hospital acquired infections typically occur to a patient 2-3 days after being admitted into the hospital. HAI often require patients to stay longer in the hospital, which also includes a longer recovery time. With a longer stay and recovery time, the cost of being in a hospital increases.

Who is more vulnerable to acquire hospital infections?

  • Young children (usually newborn babies or sick children)
  • Elderly people
  • People with existing medical conditions (for example, diabetes)
  • People who have diseases that compromise their immune system or those in chemotherapy treatments or being treated with steroids.

Most common types of hospital acquired infections

  • Pneumonia (lung infection)
  • Wound infections
  • Urinary tract infection (UTI)
  • Bloodstream infection

What are other risk factors associated with an HAI?

  • Long stay at the hospital can increase your risk for contracting a hospital infection.
  • Not properly washing your hands by hospital staff and patients.
  • The length or type of operation or surgical procedure.
  • Medical equipment that isn’t properly used or sterilized can introduce possible infection into a patient.
  • Any wound or surgical incision are inclined to infections.

How to reduce your risk of an HAI?

  • Before going to the hospital, stop smoking, keep a healthy weight, let your doctor know of any existing illnesses and manage your diabetes appropriately.
  • During your stay, make sure to wash hands properly.
  • During your stay, let your nurse know of any unclean or contaminated items in your room.
  • Ask family and friends not to visit you if they are not feeling well.

Some people are more susceptible to hospital infections compared to others. It’s important to bring awareness to hospital acquired infections, since they have become more and more common.

Featured Product: Scrub Station Bulk Organizer

Today’s featured product is our Scrub Station Bulk Organizer! This organizer is a perfect solution for keeping your PPE supplies organized and appropriately stored.

Features:

  • Constructed of durable, high impact plastic
  • Acrylic mirror on front
  • Hinged lid for easy fill
  • Front lip keeps supplies from falling out
  • Supplies are easily accessible
  • Width 10.5″ x Height 20″ x Depth 12″ x Weight 8.8 lbs.
  • Weight Capacity: 20 lbs.