Evaluating Microorganism Levels On X-Ray Aprons And Lead Wearables: The Science Of ATP Testing

How Have Microorganisms and Bioburden Been Measured?

In the previous blog post regarding X-Ray lead aprons, we explored the history of healthcare associated infections or HAIs, and how transmission risks are posed to patients and staff via contaminated “high touch, non-critical surfaces,” including X-Ray aprons and protective lead wearables.  In laying out the content of this blog, I was reminded of the phrases, “things aren’t always as they appear” and “don’t judge a book by its cover.” Is it possible that newer (clean looking) X-Ray aprons can carry a higher level of biological contamination when tested in comparison to older X-Ray aprons (which are dirty looking & smelling)? It is completely possible and plausible due to the concept of bioburden.

What is Bioburden?

Bioburden is defined in numerous medical dictionaries as the number of microorganisms contaminating an object.  So how does one assess for bioburden?  The gold standard for assessing for bacterial/fungal contamination has been to assess for colony forming units or CFUs.  A CFU equals one viable bacterium that has the ability to spread and replicate.

3 Main Ways to Measure CFUs: 

  1. A scientist could dilute the sample and count the bacteria by microscopic examination or through the use of a cell counter.  However, if bacteria are too small or clump together, then this method is problematic.  This method will yield total bacteria counts, both living and dead.
  2. A scientist could use Optical Density (OD) to estimate the number of viable bacteria in a sample.  This is where the scientist measures how cloudy a liquid culture of bacteria is.  While the bacteria are actively growing the liquid culture should continually become more and more cloudy.  Again, this method will yield total bacteria counts, both living and dead.
  3. A scientist could make serial dilutions of a liquid culture and plate out the bacteria in known dilutions until they can count single colonies and extrapolate back to figure out total CFU in a sample. This method only yields viable bacteria totals.

4 Challenges Associated with Bioburden Assessment

Assessing for bioburden (microorganisms) by calculating CFUs is not as easy or straight forward as one might imagine.

  1. The first challenge posed is that one needs to have a lab in which to grow bacteria, and depending on the bacteria one is dealing with there are different governmental regulations to follow.
  2. The second challenge presented is that of time, one needs to have the time and equipment to properly grow the bacteria/fungus.  Different species of bacteria or fungus grow at different rates, for example, culturing of bacteria on plates can take anywhere from overnight to multiple days.
  3. A third and very important challenge is posed by the bacteria and fungus themselves.  They are similar to people in the fact that not all of them grow and thrive under the same conditions.  In lab work, if only one kind of food source is used, one will only be able to assess for bacteria that grow on that particular food source.
  4. Finally, one needs to have a trained technician who knows how to assess which bacteria to grow under the correct conditions and then also how to properly count the bacteria.

While assessing for CFUs has traditionally been viewed as the gold standard for assessing bioburden, and it is vitally important for various microbial studies, it is not a good way to assess bioburden in real time.  It can be complicated.

What is ATP and How is it Evaluated?

What if there was an easier way to determine surface levels of biological contamination?

What if there was an easier way to assess for a molecule that is found only in living cells, both bacterial and human living cells?

There IS an easier way to evaluate for this molecule in real time (by using a simple swab and handheld reader), and it can be used by any hospital staff member as a surrogate for such complicated CFU work.  Let me introduce you to the molecule known as the “molecular workhorse,” called adenosine triphosphate (ATP).

Adenosine Triphosphate (ATP)

ATP is an energy molecule utilized by cells. It is present in humans, animals, plants and microbial cells.  ATP levels rise as a cell is undergoing apoptosis (programed cell death), but is generally consider to be completely degraded within 30 minutes of cell death (1).  This makes ATP a useful marker for the presence of unwanted biological contamination, including organisms that can cause infection and disease.

Okay – Get to the Point!

An increase in biological cells on a surface results in an increase in the amount of ATP present on that surface, thus making ATP an effective marker for the assessment of the hygienic status of an environmental surface. Simply stated, the amount of ATP present on a testing swab is a quantitative measurement of the cleanliness of the surface tested! In fact, ATP cell viability assays were determined to be the fastest, most sensitive, and least prone to artifacts, partially due to a lack of an incubation period (2).  The sensitivity of laboratory cell based ATP cell viability assays can detect fewer than 10 cells per well (2).  This technology has been modified to create a portable, ATP bioluminescence test, using a swab instead of plated cells.  This now allows for a real time assessment of bioburden on site.  These tests have been used to assess bioburden in many healthcare settings, including the ICU (3).  ATP measuring units, called luminometers, are handheld, user friendly, and display the results in seconds. (It doesn’t take a scientist to use an ATP luminometer!) The read out of an ATP bioluminescence test is not in CFUs, but is in relative light units or RLUs.  In the past, some scientists have questioned the validity of using a bioluminescence test instead of assaying for CFU.

Is There a Correlation Between CFUs & RLUs? 

Like most assessments, ATP bioluminescence assays also have limitations, but they are an excellent surrogate that allows the everyday staff member to assess bioburden in real time.  Those new to ATP bioluminescence testing often inquire about a correlation between CFUs and RLUs.  (Most laboratory microbiologists have the capability to perform CFU testing, and are not confined to real time assessment of bioburden.)  The most controlled way to achieve this is to look at different known amounts of CFUs and assess whether or not the RLUs increase accordingly.  That is exactly what Dr. Sciortino’s group did when they assessed three different portable ATP bioluminescence kits for their ability to detect various CFUs of two different HAI relevant bacteria (Staphylococcus aureus and Acinetobacter baumannii) and one strain of fungus (Candida albicans).

What they discovered was there was a linear relationship between bacterial CFUs and RLUs for all three luminescence kits, and for two of the three kits between fungal CFUs and RLUs (1).  Such research validates that the use of ATP luminometers can be used to assess for bioburden on surfaces in real time.  This research, plus Dr. Jaber’s study, in which 25 lead aprons were cultured for CFUs and showed that 21 were colonized with Tinea species (the family of fungus that causes ringworm) and 21 were colonized with Staphylococcus aureus, of which 3 aprons were colonized with MRSA (4), validates the ATP bioluminescence results for X-ray aprons and protective lead wearables.

In fact, these X-ray aprons and protective lead wearables, which are worn throughout many different areas within a healthcare system, including the operating rooms, cath labs, radiology/imaging areas, emergency rooms and beyond are regularly testing with RLU readings in the THOUSANDS to HUNDREDS OF THOUSANDS (5), which is scary. The bottom line is regardless if you are a classically trained microbiologist used to looking at CFUs or a hospital staffer looking at luminometer readouts in RLUs, when surfaces inside an OR or Cath Lab are testing in the hundreds of thousands range, it is a problem!

Is ATP Testing Growing in Use?

Through utilization of ATP luminometer testing systems, companies like Radiological Care Services (Indianapolis) are able to enter a facility’s Cath Lab, OR or Radiology Department and test lead apron inventories on site, providing real time numbers (bioburden levels) in a matter of seconds. An advocate for ATP luminometer testing, Dr. Sciortino even states, “ATP system monitoring may uncover the need for new disinfectant designs that adequately remove hospital surface biofilms, rendering used hospital equipment to its native state whereby a zero reading by ATP monitoring can be achieved” (1).  If you look back at the first blog post, “Contaminated X-Ray Aprons and The Risk of HAIs”, I positioned that “using wipes alone” was insufficient and through the use of ATP testing, Dr. Sciortino could be inferring a similar position.

Looking Ahead…

In the next blog post, we’ll specifically look at the science/methodology behind the use of sanitizing wipes and we’ll further explore the differences between true “cleaning” and “sanitization.” We’ll later examine what the governing bodies, such as AORN, CDC, HFAP and JCAHO state regarding their expectations of such surfaces within healthcare facilities. Understanding the science behind HAIs, testing for biological contaminants on surfaces, biofilms, and the difference between “cleaning” and “sanitization” will help us understand that current healthcare protocols in regards “non-critical, high touch surfaces” need to be changed in order to better protect hospital patients and staff.

About The Author:

Kathleen R. Jones received her BS from Purdue University (West Lafayette) in Biology specializing in Genetics and Microbiology.   After working for five years in Quality Control she then completed her MS at Purdue University in Indianapolis.  Her growing interest in Infectious Diseases lead her to the Uniformed Services University of the Health Sciences where she obtained a Doctorate in Emerging Infectious Diseases.  Kathleen has a passion for progressive sciences and initiatives, and employs her keen understanding of the biofilm formation and elimination processes into her research and work.

Sources:

  1. Sciortino, C. V. and R. A. Giles.  2012. Validation and comparison of three adenosine triphosphate luminometers for monitoring hospital surface sanitization: A Rosetta Stone for adenosine triphosphate testing.  AJIC.  40 (e233-9)
  2. Riss T.L., R.A. Moravec, A. L. Niles, H.A. Benink, T.J. Worzella, L. Minor. Minor, L, editor.  2013,  Cell Vialblity Assays. In: Sittampalam G.S., N.P. Coussens, H. Nelson, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Available from: http://www.ncbi.nlm.nih.gov/books/NBK144065/
  3. Moore, G., D. Smyth, J. Singleton, P. Wilson. 2010. The use of adenosine triphosphate bioluminescence to assess the efficacy of a modified cleaning program implemented within an intensive care setting.  AJIC. 38(8):617-622 DOI: http://dx.doi.org/10.1016/j.ajic.2010.02.011
  4. Jaber, M., M. Harvill, E. Qiao.  2014.  Lead aprons worn by interventional radiologists contain pathogenic organisms including MRSA and tinea species.  Journal of Vascular and Interventional Radiology.  25:3:S99-S100.  DOI: http://dx.doi.org/10.1016/j.jvir.2013.12.279
  5. “Outcomes: What do your numbers look like?” Radiological Care Services. Nov 20, 2014. http://www.radcareservices.com/radiolgical-care-services-outcomes.html

Contaminated X-Ray Aprons And The Risk Of HAIs

Contaminated, Dangerous, and Unacceptable: The Impact of Contaminated X-Ray Aprons and the Risk of Health Care-Associated Infections (HAIs)

Infection Prevention checklists today include many new areas of concern such as contamination in lab coats, neckties, telephones, remote controls, privacy curtains and more. X-ray aprons and protective lead wearables are worn throughout many different areas within a healthcare system, including the operating rooms, cath labs, radiology/imaging areas, emergency rooms and beyond. Clinical studies have proven that X-ray aprons silently carry a number of microorganisms – Dr. Jaber (Wayne State) cultured 25 lead aprons to discover 21 were colonized with Tinea species (the family of fungus that causes ringworm) and 21 were colonized with Staphylococcus aureus, of which 3 aprons were colonized with MRSA (1).  

The Association of periOperative Registered Nurses (AORN) makes cleaning recommendations for items such as kick buckets, stools, patient restraints, keyboards, surgical lights and more; however, lead aprons which are routinely engulfed in sweat, blood, bodily discharge and surgical debris/residue have been consistently overlooked. Healthcare systems can no longer compromise both patient and staff safety through such perilous practices.  (Note – upcoming posts will further explore “current cleaning practices,” as well as cleaning recommendations and guidelines from National Governing Bodies such as the CDC/JCAHO/HFAP and AORN.)

Health Care-Associated Infections

HAIs are the 4th largest killer in the United States, claiming 100,000 American lives each year – more deaths than AIDS, breast cancer and auto accidents combined (2).

Hospitals are meant to be safe havens.  They are meant to be a place of refuge against disease, a place to heal and a place to recover from surgery or injury.  If that is the dream, then the nightmare would be a place in which you end up more ill than you were when you were first admitted!  Unfortunately, that nightmare becomes a reality for many unsuspecting patients and staff members today. One reason for this nightmare is the acquisition of a Health Care Associated-Infection or Hospital Acquired Infection (“nosocomial infection”).

The World Health Organization (WHO) uses a 1995 definition for a Hospital Acquired Infection (HAI):

An infection occurring in a patient in a hospital or other health facility in whom the infection was not present or incubating at the time of admission.  This includes infections acquired in the hospitals but appearing after discharge, and also occupational infections among staff of the facility (3).

HAIs in our Healthcare System

Think about it – it only makes sense that hospital acquired infections would be prevalent in our healthcare systems today.  Hospitals & medical facilities are places that people congregate when they are immunocompromised and/or are sick and in need of some type of care or treatment.

World Health Organization Study

In fact, a WHO study of various hospitals in 14 countries across Europe, Eastern Mediterranean, Southeast Asia and Western Pacific regions in the late 1980s concluded that 8.7% of patients had at least one Hospital Acquired Infection equaling 1.4 million afflicted people at any one time (4-5).

Centers for Disease Control and Prevention Estimate

In the United States alone, the CDC estimates roughly 1.7 million annual hospital-associated infections, from all types of microorganisms including bacteria combined, cause or contribute to 100,000 deaths each year (6). In fact, approximately 1 in 25 hospital patients has a hospital acquired infection at any one time (7). While these statistics are startling and horrifying, sadly they do not paint the complete picture. These statistics are patient specific and do not include the number of healthcare workers and hospital staff who have also acquired Hospital Acquired Infections.

Economic Impact of HAIs

Such infections lead to additional stress, longer hospital stays, lost wages for healthcare providers and higher morbidity and mortality rates overall.  HAIs also have a HUGE economic impact.  In addition to being the 4th largest killer in America, it is estimated Hospital Acquired Infections will cost the healthcare system an additional $30 Billion (2).

Why do HAIs Occur? 

We live in a medically advanced society, so why do Health Care Associated-Infections still run rampant, and what are we doing about them?  That is a good question, but the answer is multifaceted.  The first point to consider is that patients are usually immunocompromised when in need of healthcare services. They are either already ill or they have had a procedure that puts immense stress on their bodies, e.g., a joint replacement, major illness or other surgical procedure or treatment. 

As wonderful as modern medicine is, it is not without risks.  In fact, many diagnostic and/or therapeutic procedures involve the use of a medical device, e.g, catheters, intubation tubing, scopes, etc. These devices and even many “non-critical” surfaces and “high touch objects” such as X-ray aprons and lead wearables can become contaminated when not properly cleaned and sanitized.

Healthcare facilities are a place where sick and immunocompromised patients regularly navigate and patients are often transferred between units/floors.  This allows infectious agents to travel to different areas in a hospital and expose multiple people, including patients, family and staff members.

Infectious Agents

Infectious agents (bacteria, viruses, parasites, and fungi) present their own issues.  There are species that form spores that are resistant to most mechanisms of eradication. Kramer’s group recently performed a meta-analysis of the literature and summarized that most clinically relevant species of viruses could easily survive on dry, inanimate surfaces for between a few HOURS to DAYS and clinically relevant bacterial and fungal species could survive for DAYS to MONTHS (8).  The longer the infectious agent can be found in the environment the greater the chance that it can be passed to a new host.

The Need for New Policies/Protocols

Unfortunately, Health Care-Associated Infections (HAIs) are still a substantial source of morbidity and mortality throughout the healthcare continuum today.  While recent initiatives such as improved hand washing policies have helped that burden, there are additional new policies/protocols with regards to cleaning that need to be implemented in order to address other critical “high touch objects” such as X-ray aprons and lead wearables.

Education and Awareness

Through education and open-mindedness, we can bring awareness to the importance of following the cleaning recommendations of the governing bodies, such as the CDC/JCAHO/AORN and HFAP.  In knowing that infectious agents can still adapt to become drug resistant, antiseptic resistant, and increase their ability to survive in the environment, so, we too must adapt and be open minded to new concepts in our vigilant fight against hospital acquired infections.

Oft-Overlooked: X-Ray Aprons and Lead Wearables

X-ray aprons and lead wearables can no longer be overlooked, and they will need a renewed commitment to servicing. They need to be properly cleaned prior to sanitization efforts, in accordance with the guidelines of the CDC & JCAHO.  In my next blog entry, we’ll dive into the science behind testing X-ray aprons for the presence of microorganisms and examine how these surfaces are measured and evaluated.

SPOILER ALERT – If you think you have an idea of how contaminated such surfaces are inside of our healthcare systems, you will be in for a SURPRISE!

About The Author:

Kathleen R. Jones received her BS from Purdue University (West Lafayette) in Biology specializing in Genetics and Microbiology.   After working for five years in Quality Control she then completed her MS at Purdue University in Indianapolis.  Her growing interest in Infectious Diseases lead her to the Uniformed Services University of the Health Sciences where she obtained a Doctorate in Emerging Infectious Diseases.  Kathleen has a passion for progressive sciences and initiatives, and employs her keen understanding of the biofilm formation and elimination processes into her research and work.

Sources:

  1. Jaber, M., M. Harvill, E. Qiao.  2014.  Lead aprons worn by interventional radiologists contain pathogenic organisms including MRSA and tinea species.  Journal of Vascular and Interventional Radiology.  25:3:S99-S100.  DOI: http://dx.doi.org/10.1016/j.jvir.2013.12.279
  2. “What is RID?” Committee to Reduce Infection Deaths.  n.p.  d.p.  Web.  Nov 7, 2014.  http://www.hospitalinfection.org/objective.shtml
  3. Benenson, AS.  1995.  Control of communicable diseases manual.  16th edition.  Washington, American Public Health Association.
  4. Tikomirov, E.  1987. WHO Programme for the Control of Hospital Infections.  Chemiotherapia. 3:148-151.
  5. Mayon-White, RT, G.  Ducel, T. Kereselidze, E. Tikomirov.  1988.  An internal survey of the prevalence of hospital-acquired infection.  J. Hosp. Infect.  11 (SupplementA): 43-48
  6. Klevens, RM, JR Edwards, CL Richards, TC Horan, RP Gaynes, DA Pollock, DM Cardo.  2007.  Estimating health care-associated infections and deaths in U.S. hospitals, 2002.  Public Health Rep 122:160-166
  7. Magill, SS, JR Edwards, W Bamber, ZG Beldavs, G Dumyati, MA Kainer, R Lynfield, M Maloney, L McAllister-Hollod, J Nadle, SM Ray, DL Thompson, LE Wilson, SK Fridkin.  2014.  Multistate Point-Prevalence Survey of Health Care-Associated Infections.  N Engl J Med 370:1198-1208
  8. Kramer, A., I. Schwebke, and G. Kampf.  2006.  How long do nosocomial pathogens persist on inanimate surfaces? A Systemic Review. BMC Infectious Diseases.  6:130  Doi: 10.1186/1471-2334-6-130

What is FluoroSafety?

Identifying Important Risks Associated with FGI

In 1994 the FDA released a public health advisory warning of the potential for serious radiation-induced skin injuries to patients resulting from fluoroscopically guided interventions (FGI).  In the 20 years since this advisory, there have been hundreds of published cases of skin injury resulting from FGI, and the number is steadily increasing even today.  As the scope of disease that can be diagnosed and treated using FGI increases, so does the complexity of these procedures and the radiation doses to patients, physicians, and staff.  While these procedures provide an incredible benefit to the patient compared to open-surgical alternatives, there are important risks that must be understood by the performing physician.

The Need for Effective Training

In 2010, frustrated by the lack of user-friendly, accessible, and effective training focused on this topic, two diagnostic medical physicists started Fluoroscopic Safety, LLC [http://www.fluorosafety.com]. Understanding the need for a balanced perspective and considering that radiation is not the only risk from FGI, they collaborated with an experienced board certified interventional radiologist well-known for his work in quality improvement.  Because of the multi-disciplinary M.D. and Ph.D. backgrounds of the authors of FluoroSafety courses, we understand that when a physician is performing an FGI, managing radiation dose is not the first thing on his mind.  Instead, practitioners are thinking about the patient-specific technical challenges associated with these procedures.  The training programs from FluoroSafety are developed with this in mind.  While our courses do provide instruction on the fundamental physics of fluoroscopy and radiation biology, we focus on simple methods for managing patient and staff radiation dose.  Using videos and animations, our courses provide an easy to remember and easy to execute set of practices which benefit both the physician and their patients.  This is one of the key features of our courses, designed by physicians and physicists together.

Fluoro CME Training and Education

The educational programs from FluoroSafety also help providers satisfy state regulatory requirements. Through a joint sponsorship with The University of Texas MD Anderson Cancer Center, our courses have been approved for up to 10.5 hours of AMA PRA Category 1 CreditTM.   Our programs meet the training requirements for practitioners who use fluoroscopy in Oregon, California, and Texas.  In addition, board certified providers who complete these courses are eligible to claim self assessment CME (SA-CME), as required for Maintenance of Certification (MOC) by members of the American Board of Medical Specialties (ABMS).

Interactive and Engaging Content

The educational programs from FluoroSafety are tailored to the needs of busy healthcare professionals and feature on-demand Flash-based learning rich in animations and videos.  Our courses also feature optional narration.  Course content can be accessed at the convenience of the physician from any computer, smartphone, or tablet with Internet access.

Meet State Requirements

Whether you are trying to meet state regulatory requirements or are simply interested in improving the care you provide to your patients, FluoroSafety has a course for you.  The most common feedback we have received from physicians who have taken our course is that they were surprised by how much they didn’t know about the safe use of fluoroscopy—you may be surprised too!

FluoroSafety.com

A. Kyle Jones, PhD

Alexander S. Pasciak, PhD

Joseph Steele, MD

Fluoroscopic Safety, LLC

Discover Gucci Radiation Resistant Glasses

Are you fashion savvy?

Have you been searching for a fashionable way to protect your eyes from the harmful effects of ionizing radiation?

Then look no further.

Gucci radiation resistant glasses have arrived. Gucci, a name synonymous with high-fashion and stylish sophistication is the latest addition to our radiation protection eyewear line.

Gucci’s styles for women range from the lightweight nylon frames of the Gucci GG 3547/S, to the bold, full-rimmed frame of the Gucci GG 3574/S.

For men, available styles include the classic Gucci GG1000/S full-rimmed acetate frame and the GG 1856/S ultra-sleek wrap frame.

Radiation resistant glasses never looked so good.

Women’s Radiation Resistant Glasses

Gucci GG 3547/S

The Gucci GG 3547/S (shown above) frames are made of lightweight, durable blended nylon for added comfort and flexibility. Unlike the brittle nylon eyeglass frames of the late 1940s, blended nylon frames are more resistant to breakage and are inherently stronger than their predecessor. Consequently, blended nylon frames are ideal for those looking for a high-quality, durable, and resilient frame.

The round shape of these frames subtly draws attention to the eyes and are well-suited for those with diamond-shaped faces. The ‘simultaneous contrast’ of the red and green temples, juxtaposing complementary colors, creates a stunning visual effect. The decorative, high-set temples are emblazoned with the iconic Gucci label (white lettering) on a bold red background. For those who have been seeking a distinctive and sophisticated pair of radiation resistant glasses, your journey finally may be nearing its end.

 

Gucci GG 3574/S

The epitome of Italian luxury, the Gucci GG 3574/S rectangular frame is bold and distinctive. The hypoallergenic black optyl frame is specially coated to resist sweat and cosmetics. These Gucci radiation resistant glasses seamlessly blend fashion, elegance, and sophistication into an integral piece of personal radiation protective equipment. A trendy frame for those who are unwilling to sacrifice style but understand the importance of properly protecting their eyes from the harmful effects of ionizing radiation.

Have you been searching for radiation eye protection that is functional, yet fashionable?

Your search is over.

These Gucci radiation resistant frames are the answer.

Offering the industry standard 0.75mm lead equivalency, the SCHOTT radiation resistant safety glass lenses will protect your eyes from the harmful effects of ionizing radiation.

According to the IAEA (International Atomic Energy Agency), “Many years or decades could pass before radiation-induced eye lens injuries become apparent. At relatively high exposures of a few Gy* , lens opacities may occur after many years¹.”

Ensure that your eyes are properly protected by wearing the appropriate radiation resistant glasses. In a 2010 study, Comparing Strategies For Operator Eye Protection In The Interventional Radiography Suite, “The use of leaded glasses alone reduced the lens dose rate by a factor of 5 to 10.” Reduce your risk of developing cataracts, while staying fashionable and safe with Gucci radiation resistant glasses.

Sources:

Thornton RH, Dauer LT, Altamirano JP, Alvardo KJ, St Germain J, Solomon SB. (2010) Comparing Strategies For Operator Eye Protection In The Interventional Radiography Suite.

http://www.ncbi.nlm.nih.gov/pubmed/20920841

IAEA | Radiation Protection of Patients (RPOP) Radiation and cataract: Staff protection

http://rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/6_OtherClinicalSpecialities/radiation-cataract/Radiation-and_cataract.htm

Gray (Unit)

Wiki: http://en.wikipedia.org/wiki/Gray_(unit)

*Gy = Gray, is a derived unit of ionizing radiation dose in the International System of Units (SI). It is a measure of the absorbed dose and is defined and is defined as the absorption of one joule of radiation energy by one kilogram of matter (0.01 Gy is equivalent to 1 rad).

Whiteboard Wednesday: Surgeon Cooling Systems

How Do Surgeons Stay Cool In The Operating Room?

Today on Whiteboard Wednesday we talk about how surgeons stay cool in the operating room. A major concern for medical staff working in the OR is fatigue caused by overheating.  Overheating is caused by the multiple layers surgeons and staff must wear for protection. During certain procedures the surgeon’s body heat is intensified, the CoolVest can help keep the surgeon more comfortable and alert.

What Is A Surgeon Cooling System?

The CoolVest System is a unique and innovative personal cooling system that is designed to keep surgeons cool and focused while performing surgery. The Single-Surgeon CoolVest System allows you to regulate your personal comfort so that you won’t perspire, suffer fatigue or lose concentration. The surgeon cooling system includes a lightweight vest that is constructed of hospital-grade ventilated nylon for maximum cooling, a variable flow control with quick-dry disconnect, wheeled cart with handle for convenient portability, and a UL listed cooler with variable flow 110V pump.

How Does The Surgeon Cooling System Work?  

The CoolVest is worn over scrubs and under surgical gowns. The tubing connection is located at the lower back of the garment to help keep the water supply tubing from interfering with the sterile field. Cooling tubes are located in the front and back of the garment for maximum cooling. The patented, thin-walled, non-kink tubing has been specifically designed for use under lead aprons.

Setup

  1. To begin, the cooling unit is filled with a mixture of approximately one gallon of water and ice (preferably block ice) or cube ice to the top of the unit.
  2. After the unit has been properly filled, you will want to attach the 8 foot insulated supply hose (quick disconnect) to the CoolVest.
  3. Apply the protective hose cover and then attach the other end of the insulated supply hose to the cooling unit.
  4. Listen for an audible click from both quick disconnect hose connections to ensure that they are properly connected.

Operation

  1. Once the supply hose has been properly protected and connected, you will want to plug the cooling unit’s electrical adapter into a grounded 110V outlet.
  2. Turn the unit on using the green On/Off power switch.
  3. Allow the unit to cycle until L.E.D indicator on Speed Control is activated (30 second pump start delay).
  4. Press “Ice Cube” on the Speed Control display on the lid of the system to start unit at desired level. L.E.D. on display will light from left to right for increased water flow. (e.g. 20-40-60-80-100% levels)
  5. To increase flow rate, press the “Ice Cube” button again, as needed, to adjust to the desired flow rate.
  6. To reset Speed Control setting: press “Ice Cube” until the surgeon cooling system stops; restart by pressing “Ice Cube” again until correct setting is indicated.

Relief From Heat While Performing Surgery

Surgeons have been impacted by excessive heat surrounding their bodies due to stress and other environmental factors. For example, neurosurgeons are required to wear appropriate radiation protective shielding (lead aprons, thyroid collars, lead glasses) while using imaging technology to protect them from the harmful effects of ionizing radiation. The use of these protective garments in addition to scrubs and surgical gowns can significantly increase the surgeon’s body temperature during surgical procedures. The increase in temperature can result in the surgeon becoming fatigued and perspiring during long surgeries which can reduce their focus and attention, resulting in a decrease in their ability to perform their tasks at the desired level.

Share Your Experiences

Have you experienced an increase in your body temperature while performing complicated surgeries? Interested in learning more? Make sure to check out our post on the Active Cooling Vest System For Surgeons In The OR!

Active Cooling Vest System For Surgeons In The OR

What is an active cooling vest? 

A cooling vest is a piece of equipment designed to cool a person down. Cooling vests are used by doctors, athletes, industrial workers, working dogs, individuals with Multiple Sclerosis or hypohidrotic ectodermal dysplasia, race care drivers, and military personnel.

Active cooling vests and systems require some form of power, electricity or battery, to operate. This type of cooling technology provides continuous cooling to lower the body’s core temperature by circulating cold water via a cooler through a tube to the vest.

CoolVest System 

Although cooling vests are used by a variety of people for a variety of uses, the CoolVest System has been designed specifically for surgeons working in the OR. Staying cool in the OR is an important consideration for surgeons, especially when performing pediatric surgeries, burn or trauma cases. The CoolVest System will keep you cool and focused – even when the OR has been warmed to AORN (recommended OR temperature 68-73 Fahrenheit) and Joint Commission Standards. When performing surgical procedures where the surgeon is exerting a great deal of physical effort, body temperatures can easily rise while covered with sterile gowns and lead aprons, not to mention the heat emitted from the OR lights.

CoolVest System Features

  • Lightweight vest made with hospital-grade ventilated nylon for maximum comfort.
  • Variable flow control and quick-dry disconnects for ease-of-use.
  • Choice of styles & sizes from small – XXXL
  • Variable hose lengths for freedom of motion.
  • Up to 70 feet of patented, thin wall, no-kink tubing for use under lead aprons.
  • Low-profile cooling unit for easy storage.
  • Wheeled cart with handle for convenient portability.
  • Single and dual vest capacity.
  • Heavy duty pump system.
  • Limited Lifetime Warranty with Free Loaner Program
  • UL Listing guarantees the highest quality standards for use in the OR.

Single-Surgeon System Includes

  • One premium CoolVest (Small-XXXL)
  • 8 foot insulated supply hose with quick disconnects
  • Protective hose cover
  • T-Drain kit
  • Maintenance additive (16 ounce bottle)
  • Stainless steel cart with hospital grade wheels
  • UL Listed cooler with variable flow 110V pump

A Dual-Surgeon System is also available and comes with two premium CoolVests. 

Remain Alert And Focused

The CoolVest System offers variable flow control, which allows you to regulate the fluid flow to your personal comfort level so that you won’t perspire, suffer fatigue or lose concentration. No matter how long or complex the surgery, you’ll remain alert an focused.

Stay Cool And Comfortable

The lightweight vest is made with hospital-grade ventilated nylon for maximum comfort. Available in sizes ranging from small to XXXL the CoolVest is lightweight, comfortable, and durable for OR conditions. Comfort is essential when working under intense pressure and performing hundreds of high-risk procedures each year. The CoolVest will help surgeons and medical staff stay cool and focused while working in the OR. Make sure to visit our Surgeon Cooling section on our main site for more CoolVest products.

3 Rugged Oakley Radiation Eye Protection Lead Glasses

New Lead Glasses From Oakley

We are excited to announce the addition of a new line of high-quality and durable radiation eye protection lead glasses from Oakley. There are three models available including the classic Oakley Straight Jacket, the Oakley Crankshaft, and the Oakley Fives Squared. These new frames are a welcomed addition to our extensive selection of radiation eye protection and that provides our customers with a stylish and unique answer to traditional radiation eye protection.

 Straight Jacket® Lead Glasses

The aggressive styling combined with over a decade worth of research has produced the Oakley Straight Jacket radiation glasses. These lightweight and durable stress resistant Straight Jacket frames utilize Oakley’s O-Matter® frame technology and are engineered to provide you with all-day comfort and performance.

Part of the Oakley active line, and available in a variety of colors, these frames offer protection that meets ANSI standards for both high-velocity and high-mass impact.

Designed to fit medium faces, the Straight Jacket frame utilizes soft Unobtanium components to increase grip with perspiration around the nose and ears, ensuring a snug fit.

For those that define style on their terms, the Oakley Straight Jacket Radiation Protection Lead Glasses provide you with unmatched comfort, performance and eye protection from the harmful effects of ionizing radiation.

Crankshaft™ Lead Glasses

Fusing radiation protection with the inspired smooth styling of the popular Oakley Gascan® and Fuel Cell™ designs comes the ultimate in radiation eye protection, introducing the revolutionary Crankshaft Radiation Glasses.

The lightweight and durable stress-resistant Crankshaft frames, available in a variety of colors, utilize Oakley O-Matter frame technology providing you with all-day comfort and performance.

Part of the Oakley Lifestyle line, these wraparound frames improve side protection and are designed to comfortably fit medium to large faces.

Achieve a new level of performance and style while protecting your eyes from radiation with the innovative Crankshaft Radiation Glasses.

Fives Squared Radiation Protection Lead Glasses

Faces are not one size fits all, your radiation glasses are no exception. Introducing the Fives Squared Radiation Protection Glasses, specifically designed for small to medium faces, that feel as great as they look.

Constructed of Oakley’s lightweight and durable stress-resistant O-Matter material, this frame is engineered to provide you all-day comfort and performance by utilizing Oakleys unique condensed cranial geometry.

The patented hydrophilic Unobtainum nose pads reduce slipping by increasing grip with perspiration, providing you with a snug and secure fit.

The dimensional reliefs, metal icons and sculpturally integrated hinges with dual action cams, the Fives Squared frame is the perfect blend of sophisticated styling and performance eye protection.

When ordinary radiation protection glasses just don’t fit, look no further, the Fives Squared Radiation Glasses is your answer to comfort and protection.

Lead Glass Lenses 

All three of the frames are outfitted with SCHOTT Radiation Safety Glass Lenses that provide the industry standard 0.75 millimeter lead equivalency and are held securely in place by Oakley’s unique Three-Point Fit technology, ensuring safety and long lasting performance.

Frame Personalization 

You can leave your mark by adding the option of a personalized imprinting of up to 35 characters on the outside of the frame arm and enhance the performance of the lead glass lenses with the optional fog-free or anti-reflective coatings. These customizations and enhancements are available for all three frames.

This is an exciting addition to our radiation eye protection line-up and if you would like to be notified of any future radiation eye protection glasses subscribe to our blog and we will notify you of upcoming product releases.

5 Ways To Minimize Your Occupational Radiation Exposure

Minimizing Occupational Exposure

“The ideal dose is the least amount of radiation possible to produce an acceptable image.”

1. Time

Time is one of the three basic safety measures to reduce external radiation exposure. It is important for healthcare personnel to limit the amount of time spent in close proximity to the radiation source when exposure to the radiation source is possible. Reducing the time of an exposure reduces the effective dose (radiation) proportionally. Consequently, the less time you are around the equipment, the smaller your exposure will be.

2. Notification by Radiation Equipment Operator

Before any treatment or procedure, it is the responsibility of the trained and certified radiation equipment operator to notify healthcare personnel in the x-ray or treatment room prior to the activation of radiation producing equipment (RPE).

Any piece of equipment in which x-rays are produced electrically are classified as radiation producing equipment or RPE. These tools are used in a variety of medical applications including radiography, mammography, computed tomography, and fluoroscopy.

3. Fluoroscopic Procedures

Healthcare personnel performing fluoroscopic procedures must ensure that the patient is kept as close as possible to the image intensifier side of the fluoroscopic unit and away from the tube side of the unit. All healthcare personnel involved in the fluoroscopic procedure must stand on the image intensifier side of the fluoroscopic unit, whenever possible, to reduce the radiation exposure. Standing on the the same side as the image intensifier radiation intensity is decreased.

4. Avoid Direct Beam Exposure

Healthcare personnel assisting with radiological procedures must avoid holding the patient manually during a radiographic study due to the risk of direct beam exposure.  Any individual holding or supporting a person during radiation exposure should wear protective gloves and apron with a minimum of 0.25 millimeters lead equivalent. Under no circumstances should individuals holding or supporting a person’s part of their body be directly in the primary beam. Healthcare personnel must avoid exposing any body parts to direct x-ray beam exposure.

5. Utilize Shielding

Whenever possible, appropriate shielding should be used to provide attenuation of the radiation being delivered to the healthcare personnel who are potentially exposed. Healthcare personnel must keep all body parts out of the direct x-ray beam. There are a variety of shielding options available and may include, but are not limited to:

Specific Shielding Applications

Healthcare personnel who may have to stand with their backs exposed to the radiation beam must wear wrap-around aprons to decrease the risk of radiation exposure.

Bone and Bone Marrow Protection

When healthcare personnel are in close proximity to the radiation beam they should wear an appropriate lead or lead equivalent apron of sufficient length to shield the upper legs and protect the long bones and bone marrow from increased doses of radiation.

Thyroid Protection 

Healthcare personnel must wear a thyroid collar to protect the thyroid whenever the likelihood of the procedure places them at a higher risk of increased exposure.

Female Healthcare Personnel 

Female healthcare personnel must protect their breasts from radiation exposure by utilizing an apron that completely covers the area.

Eye protection

Healthcare personnel must shield the lens of the eye by using leaded eyeglasses with wrap-around side shields or leaded face shields to reduce scatter radiation when it is anticipated that increased fluoroscopic time may be necessary.

Limiting Radiation Exposure 

Reducing radiological exposure in healthcare settings is important for both occupational workers as well as patients. The following guidelines are based on the radiation safety principles of time, distance, and shielding. By following these guidelines, you can reduce your occupational exposure to radiation.

 

 

 

Note: This information included in this post is intended for general reference information only. The information provided is not a substitute for professional advice and should not be relied upon in the absence of such professional advice.

How To Choose The Right X-Ray Apron Style (Part 3)

Which x-ray apron style is right for you?

X-ray aprons are available in a wide variety of styles to meet the specific needs of medical professionals. Determining which lead x-ray apron style is right for you may seem overwhelming. The selection process can be simplified into several easy steps and in this post we will walk you through the necessary steps to ensure that you find the right x-ray apron as well as the appropriate level of radiation protection. The x-ray selection process can be broken down into three steps: (1) choosing your core material, (2) selecting the type of protection required, and (3) determining the best x-ray apron style for your needs.

Core Materials

In our previous post, How-To Determine Which X-Ray Apron Material Is Right For You, we discussed the three different types of core x-ray apron material options including traditional lead, lead composite, and non-lead. Each core material offers a distinct benefit, traditional lead aprons are the most economical, lead composite aprons provide an average weight savings of 25% compared to traditional lead aprons, and non-lead aprons are the lightest weight option available. Once you have determined the core material you can then choose the type of protection needed.

X-Ray Apron Coverage Protection Options

When selecting the type of radiation protection required for your specific application, it is important to understand the unique benefits each style offers. The three common x-ray apron styles are front protection, front/back protection, and quick-drop. Front protection x-ray aprons are ideal for those who only require front-protection during procedures. X-ray aprons that offer front and back protection are designed for those who circulate and will have their back to the radiation source.  The quick- drop x-ray apron has been designed for those who need to remove the x-ray apron during surgery without breaking the sterile field.

Understanding The Various Style Options

Now that we understand the coverage and protection offered by the three main x-ray apron styles, we can take a closer look into the unique benefits available for each apron style.

Frontal Protection

X-ray aprons offering frontal protection are available with several important features including closure options, back type and frontal aprons designed for specialty applications. Front protection x-ray aprons are available with three different closure types including buckle closure, strap closure (tie style), and velcro closure.

There are several factors you will want to consider when choosing the right x-ray apron back type including apron weight, the length of procedure, and types of procedures performed. There are a variety of x-ray apron back types to choose from including the standard plain back apron, flex back apron, back relief/support apron, and fast wrap aprons. There are several speciality options available including pregnancy aprons (1.00mm Pb equivalency over fetal area) and lap guards, lead aprons with a sewn in thyroid collar, and the quick ship lightweight lead flex guard apron.

Front and Back Protection

There are several options to choose from when looking for front and back protection including full wrap aprons and vest/skirt aprons.  Standard medical x-ray protection levels commonly available  for front/back protection aprons are offered in the following combinations:

Front Protection Pb Equivalent/Back Protection Pb Equivalent

  • 0.50mm/0.25mm
  • 0.35mm/0.25mm
  • 0.25mm/0.25mm

Full Wrap Aprons

Full wrap aprons are available in several styles including full overwrap, special procedure, and tabard styles while providing maximum protection. Full overwrap aprons provide lumbar support which reduces fatigue and upper back stress during long procedures. Vest/skirt aprons create maximum weight distribution between the shoulders and hips which eliminates stress on the upper and lower back.

Full Overwrap Protection 

The full overwrap aprons are secured via velcro straps and provides maximum radiation protection which reduces back fatigue during long procedures.

Special Procedure

Special procedure aprons have velcro seems that allow the sides of the apron to separate when bending or sitting while still maintaining front protection.

 

Tabard Style

The tabard style apron – a tabard was a short coat that men commonly wore during the middle ages – is a sleeveless, single piece apron that has a right shoulder and side velcro closure that allows for easy access.

Vest/Skirt Aprons

Vest/skirt aprons provide greater flexibility to the wearer with regard to sitting, bending, or stooping. The skirt is designed for complete overlap to provide maximum protection. Many of the vest/skirt sizes can be mixed to provide maximum comfort and fit.

Quick Drop X-Ray Apron

The quick-drop apron style is designed to be worn over the scrub suit and under the O.R. gown for quick removal without breaking the sterile field after x-ray procedures are completed. The quick-drop style aprons do not have arm holes and require assistance from a second party when putting it on or removing the apron. Quick-drop aprons are available with velcro criss-cross back flaps that assure easy removal. The Xenolite O.R. Quick-Drop Apron allows for freedom of movement, maximum flexibility, and optimal comfort.

Questions? 

Now that we have reviewed the various benefits of the core materials used in x-ray aprons, the different types of protection, and highlighted some of the main benefits of the different types of apron styles, you should be able to choose the right x-ray apron for your specific needs. If you have any additional questions, feel free to leave a comment below or contact us via live chat on our e-commerce site during normal business hours (M-F 9-5 EST).

Whiteboard Wednesday: What Should Someone Consider Before Selecting A Lab Rocker or Shaker?

Today on Whiteboard Wednesday we’re talking about what someone should consider before selecting a laboratory rocker or shaker. With many different sizes and variations to laboratory equipment, it’s important to know exactly what your lab needs. Watch our Whiteboard Wednesday video below: